Math, asked by spamfreeXD, 9 months ago

The internal and external diameters of a hollow hemispherical vessel are 24 cm and 25 cm respectively. Find the cost of painting the vessel all over, at the rate of 5 paise per sq.cm.

No spam.​

Answers

Answered by Anonymous
113

\huge\underline\mathfrak{Answer\:\:-}

Given :

• Internal diameter of hollow hemispherical vessel = 24 cm

\\

• External diameter of hollow hemispherical vessel = 25 cm.

\\

• Let r be the internal radius and R be the external radius respectively.

\\

  • r = 12 cm
  • R = 12.5 cm

\\

________________________

\rm\underline{\:\:\:\:Total\:surface\:area\:to\:be\:painted\:\::-}

\\

 \:  \quad \sf \: External \: curved \: surface \: area + Internal \: curved \\  \sf\: surface \: area + Area \: of \: ring \\  \\  \\  \colon\implies \tt \: 2\pi {R}^{2}  + 2\pi {r}^{2}  + \pi \: ( {R}^{2}  -  {r}^{2} ) \\  \\  \\ \colon \implies \tt\pi \: (2 {R}^{2}  + 2\pi {r}^{2}  + R - r) \\  \\  \\ \colon \implies \tt\pi \: (3 {R}^{2}  +  {r}^{2} ) \\  \\  \\  \colon\implies \tt \frac{22}{7}  \: (3 \times  {12.5}^{2}  +  {12}^{2} ) \\  \\  \\ \colon \implies \tt \:  \frac{22}{7}  \: (468.75 + 144) \\  \\  \\  \colon\implies \tt \frac{22}{7}  \times 612.75 \\  \\  \\  \colon\implies \tt \blue{1925.78 \: sq.cm} \\  \\

____________________

\\

Rate of painting = 5 paise per sq.cm.

\\

Thus,

\\

 \qquad \sf \: Area \times Rate \\  \\  \implies \sf \frac{1925.78 \times  \cancel5}{ \cancel{10}0} \\  \\  \\  \implies \sf \green{Rs.96.29} \\  \\

Answered by Anonymous
37

\large{\underline{\mathfrak{\red{Answer:}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\boxed{\rm{\blue{Cost\:of\:painting\:=\:Rs\:96.29}}}}

⠀⠀⠀⠀⠀⠀⠀

\large{\underline{\mathfrak{\red{Step\:-\:by\:-\:step\:-\:explanation:}}}}

⠀⠀⠀⠀⠀⠀⠀

\begin{lgathered}\bold{Given} \begin{cases}\sf{Internal\:diameter\:of\:spherical\:vessel\:=\:24\:cm} \\ \sf{External\:diameter\:of\:hemispherical\:vessel\:25\:cm}\\ \sf{Cost\:of\:painting\:vessel\:at\:the\:rate\:of\:5\:paise\:per\:cm^2\:=?}\end{cases}\end{lgathered}

⠀⠀⠀⠀⠀⠀⠀

★ Internal radius = \sf{\dfrac{24}{2}}

⠀⠀⠀⠀⠀⠀⠀

: \implies Internal radius (r) = 12 cm

⠀⠀⠀⠀⠀⠀⠀

★ External radius = \sf{\dfrac{25}{2}}

⠀⠀⠀⠀⠀⠀⠀

: \implies External radius (R) = 12.5 cm

⠀⠀⠀⠀⠀⠀⠀

\rule{200}2

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀\small{\underline{\bold{\sf{\purple{Total\:surface\:area\:to\:be\:painted:}}}}}

⠀⠀⠀⠀⠀⠀⠀

: \implies \boxed{\sf{External\:CSA\:+\:Internal\:CSA\:+\:Area\:of\:ring}}

⠀⠀⠀⠀⠀⠀⠀

: \implies \sf{2 \pi {R}^{2}\:+\:2 \pi {r}^{2}\:+\: \pi\:(R^2\:-\:r^2)}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀\small{\green{\sf{Taking\:\pi\:as\:common-}}}

⠀⠀⠀⠀⠀⠀⠀

: \implies \sf{\pi (2R^2\:+\:2r^2\:+\:R^2\:-\:r^2)}

⠀⠀⠀⠀⠀⠀⠀

: \implies \sf{\pi (3R^2\:+\:r^2)}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀\small{\pink{\sf{Putting\:the\:values-}}}

⠀⠀⠀⠀⠀⠀⠀

: \implies \sf{\dfrac{22}{7}\:[3\:\times\:(12.5)^2\:+\:(12)^2]}

⠀⠀⠀⠀⠀⠀⠀

: \implies \sf{\dfrac{22}{7}\:\times\:612.75}

⠀⠀⠀⠀⠀⠀⠀

: \implies \sf{\red{1925.78\:cm^2}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\rule{200}2

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\orange{\sf{Rate\:of\:painting\:per\:cm^2\:=\:5\:paise}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

: \implies \sf{Cost\:of\:painting\:1925.78\:cm^2\:=\:\dfrac{5\:\times\:1925.78}{100}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

: \implies \large{\boxed{\rm{\blue{Cost\:of\:painting\:=\:Rs\:96.29}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\therefore{\large{\bold{\sf{Cost\:of\:painting\:vessel\:at\:the\:rate\:of\:5\:paise\:per\:cm^2\:is\:Rs\:96.29}}}}

Similar questions