Math, asked by Anonymous, 19 days ago

The interval in which x
must lie so that the numerically greatest term in the expansion of (1-x)²¹ has the greatest coefficient is (a/b,6/5) Find the value of (a+b).

Please provide enough explanation.

Answers

Answered by mathdude500
25

\large\underline{\sf{Solution-}}

Given that,

The interval in which x must lie so that the numerically greatest term in the expansion of (1-x)²¹ has the greatest coefficient is (a/b,6/5).

Now, the given expansion is

\rm \: {(1 - x)}^{21}  \:  \: provided \: that \: x > 0 \\

We know, in the expansion of

\rm \:  {(1 - x)}^{n} \: where \: n \: is \: odd, \: the \: terms \: having \: maximum \: numerical \: value \: is \:

\boxed{\sf{  \:\rm \:T_{\dfrac{n  +  1}{2} }  \:  \: and \:  \:T_{\dfrac{n  + 3}{2} } }}

So, here n = 21, which is odd.

So, terms having maximum numeric value are

\rm \: T_{\dfrac{21  + 1}{2} } \:  \: and \:  \: T_{\dfrac{21  + 3}{2} }

\rm \: T_{\dfrac{22}{2} } \:  \: and \:  \: T_{\dfrac{24}{2} }

\rm\implies \:T_{11} \:  \: and \: T_{12}

So, we have now

\rm \:  |T_{11}|  >  |T_{10}|  \:  \: and \:  \:  |T_{12}|  >  |T_{13}|  \\

\rm \:  |T_{10 + 1}|  >  |T_{9 + 1}|  \:  \: and \:  \:  |T_{11 + 1}|  >  |T_{12 + 1}|  \\

\rm \:  |^{21}C_{10} {( - x)}^{10} |  > |^{21}C_{9} {( - x)}^{9} |  \:  \: and \:  \: |^{21}C_{11} {( - x)}^{11} |  > |^{21}C_{12} {( - x)}^{12} |

\rm \:  |^{21}C_{10} {x}^{10} |  > |^{21}C_{9} {x}^{9} |  \:  \: and \:  \: |^{21}C_{11} { x}^{11} |  > |^{21}C_{12} {x}^{12} |  \\

\rm \: \dfrac{^{21}C_{10}}{^{21}C_{9}} x > 1 \:  \: and \:  \: \dfrac{^{21}C_{12}}{^{21}C_{11}} x  <  1 \\

We know

\boxed{\sf{  \:\rm \: \dfrac{^{n}C_{r}}{^{n}C_{r - 1}} =  \frac{n - r + 1}{r}  \: }} \\

So, using this identity, we get

\rm \: \dfrac{21 - 9}{10} \: x  > 1 \:  \: and \:  \: \dfrac{21 - 11}{12} \: x  < 1 \\

\rm \: \dfrac{12x}{10} \:  > 1 \:  \: and \:  \: \dfrac{10x}{12} \:   < 1 \\

\rm \: \dfrac{6x}{5} \:  > 1 \:  \: and \:  \: \dfrac{5x}{6} \:   < 1 \\

\rm\implies \:x > \dfrac{5}{6}  \:  \: and \:  \: x < \dfrac{6}{5}  \\

\rm\implies \:x \:  \in \: \bigg(\dfrac{5}{6}, \:  \dfrac{6}{5}  \bigg)  \\

As it is given that,

\rm \:  \:x \:  \in \: \bigg(\dfrac{a}{b}, \:  \dfrac{6}{5}  \bigg)  \\

So, on comparing, we get

\rm \: a \:  =  \: 5 \:  \: and \:  \: b \:  =  \: 6 \\

\rm\implies \:a + b = 5 + 6 = 11 \\

\rule{190pt}{2pt}

Formula used :-

\sf \: In \: the \: expansion \: of \:  {(x + y)}^{n}, \: the \: general \: term \: is \:  \\

\boxed{\sf{  \:\rm \: T_{r + 1} \:  =  \: ^{n}C_{r} \:  {x}^{n - r}  \: {y}^{r}  \:  \: }} \\

Similar questions