Math, asked by Shreya7772, 11 months ago

The inverse of the funtion f : R → (-1, 3) is given by
f (x) = eˣ - e⁻ˣ/eˣ + e⁻ˣ + 2
(a) log (x - 1/x + 1)⁻² (b) log ( x - 2/x - 1)¹/²
(c) log (x/2 - x)¹/² (d) log (x - 1/3 - x)¹/²

Answers

Answered by Anonymous
3

Answer:

\large\boxed{\sf{(d)\:log{( \dfrac{x - 1}{3 - x}) }^{ \frac{1}{2} }}}

Step-by-step explanation:

Given a function such that f : R → (-1, 3) is given by,

f(x) =  \dfrac{ {e}^{x} -  {e}^{ - x}  }{ {e}^{x}  +  {e}^{ - x} }  + 2

Now, to find the inverse of f(x),

Let's assume f(x) = y

Therefore, we will get,

 =  > y =  \dfrac{ {e}^{x}  -  \frac{1}{ {e}^{x} } }{ {e}^{x}  +  \frac{1}{ {e}^{x} } }  + 2 \\  \\  =  > y =  \dfrac{ {e}^{2x} - 1 }{ {e}^{2x}  + 1}  + 2 \\  \\  =  > y =  \dfrac{ {e}^{2x}  - 1 + 2 {e}^{2x}  + 2}{ {e}^{2x}  + 1}  \\  \\  =  > y =  \frac{3 {e}^{2x}  + 1}  { {e}^{2x} + 1 }  \\  \\  =  > y( {e}^{2x} + 1) = 3 {e}^{2x}   + 1 \\  \\  =  > y {e}^{2x}  + y = 3 {e}^{2x}  + 1 \\  \\  =  > y {e}^{2x}  - 3 {e}^{2x}  = 1 - y \\  \\  =  >  {e}^{2x} (y - 3) = 1 - y \\  \\  =  >  {e}^{2x}  =  \dfrac{1 - y}{y - 3}  \\  \\  =  >  {e}^{2x}  =  \dfrac{y - 1}{3 - y} \\  \\  =  > 2x =  log( \dfrac{y - 1}{3 - y} )   \\  \\  =  > x =  \dfrac{1}{2}  log( \dfrac{y - 1}{ 3 - y} )  \\  \\  =  > x =  log {( \dfrac{y - 1}{3 - y} )}^{ \frac{1}{2} }

Now, replacing x with y and y with x, we get,

 =  > y =  log{( \dfrac{x - 1}{3 - x}) }^{ \frac{1}{2} }

Hence, the correct option is \bold{(d)\:log{( \dfrac{x - 1}{3 - x}) }^{ \frac{1}{2} } }

Similar questions