Chemistry, asked by BrainlyHelper, 1 year ago

The ionisation constant of dimethylamine is 5.4 × 10^{-4}. Calculate its degree of ionization in its 0.02 M solution. What percentage of dimethylamine is ionized if the solution is also 0.1 M NaOH ?

Answers

Answered by harsh7933
0
Kb = 5.4x10-4
c = 0.02M
Now, if 0.1 M of NaOH is added to the solution, then NaOH (being a strong base) undergoes complete ionization.
NaOH (aq) ↔ Na + (aq) + OH - (aq)
0.1M 0.1M
and
(CH 3 ) 2 NH + H 2 O ↔ (CH 3 ) 2 NH + 2 + O- H
0.02-x x x
Then (CH 3 ) 2 NH + 2 = x
[OH - ] = x + 0.1 ; 0.1
⇒ Kb = [(CH 3 )2 NH + 2 ] [OH - ] / [CH 3 )2 NH]
5.4x10-4 = x x 0.1 / 0.02
x = 0.0054
It means that in the presence of 0.1 M NaOH, 0.54% of dimethylamine will get dissociated.
Answered by phillipinestest
2

"Let's calculate the “degree of ionization”.


Formula:\quad \alpha \quad =\quad \sqrt {\frac {{k}_{b}}{c}}

From the given


Ionization constant = { k }_{ b } = 5.4\quad \times \quad { 10 }^{ -4 }

c = 0.02 M


Substitute the values


=\quad \sqrt { \frac { 5.4\quad \times\quad { 10 }^{ -4 } }{ 0.02 } \quad =\quad 0.1643 }

If 0.1 M of NaOGH is added to the solution, then NaOH undergoes complete ionization.


The ionization reaction is as follows.


NaOH\quad (aq)\quad \leftrightarrow \quad { Na }^{ + }(aq)\quad +\quad { OH }^{ - }(aq)\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad 0.1\quad M\quad \quad \quad \quad 0.1\quad M

NaOH\quad (aq)\quad \leftrightarrow \quad { Na }^{ + }(aq)\quad +\quad { OH }^{ - }(aq)\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad 0.1\quad M\quad \quad \quad \quad 0.1\quad M\\

{ (CH }_{ 3 }{ ) }_{ 2 }NH\quad +\quad { H }_{ 2 }O\quad \leftrightarrow \quad { (CH }_{ 3 }{ ) }_{ 2 }N{ H }^{ + }\quad +\quad { OH }^{ - }\\ (0.02\quad -\quad x)\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x\quad \quad \quad \quad \quad \quad x\\ 0.02\quad M\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad 0.1\quad M

Then,


[{ (CH }_{ 3 }{ ) }_{ 2 }N{ H }_{ 2 }^{ + }]\quad =\quad x

[{ OH }^{ - }]\quad =\quad x\quad +\quad 0.1

{ K }_{ b }\quad =\quad \frac { [{ (CH }_{ 3 }{ ) }_{ 2 }N{ H }_{ 2 }^{ + }][{ OH }^{ - }] }{ [{ (CH }_{ 3 }{ ) }_{ 2 }NH] } \\ 5.4\quad \times \quad { 10 }^{ -4 }\quad =\quad \frac { x\quad \times \quad 0.1 }{ 0.02 }

x\quad =\quad 0.0054

It indicates, In the presence of 0.1 M NaOH, 0.54% of dimethylamine will get dissociated."

Similar questions