Math, asked by Sindhujainfant77, 4 months ago

the jacobian of p,q,r with respect to x,y,z where p=x+y+z ,q=y+z,r=z​

Answers

Answered by pulakmath007
2

SOLUTION

TO DETERMINE

The Jacobian of p,q,r with respect to x,y,z where p=x+y+z ,q=y+z,r=z

EVALUATION

Here it is given that p=x+y+z ,q=y+z,r=z

So the required Jacobian

= J

 = \displaystyle \:  \frac{ \partial (p,q,r)}{ \partial(x,y,z)}

 = \displaystyle\begin{vmatrix}  \frac{ \partial p}{ \partial x}  & \frac{ \partial p}{ \partial y} & \frac{ \partial p}{ \partial z} \\  \\  \frac{ \partial q}{ \partial x}  & \frac{ \partial q}{ \partial y} & \frac{ \partial q}{ \partial z} \\ \\  \frac{ \partial r}{ \partial x}  & \frac{ \partial r}{ \partial y} & \frac{ \partial r}{ \partial z} \end{vmatrix}

 = \displaystyle\begin{vmatrix} 1 & 1 & 1\\ 0 & 1 &  1 \\ 0 & 0 &  1 \end{vmatrix}

 = 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If u=y2/2x , v = x/2+y2/2x find ∂(u,v)/ ∂(x,y).

https://brainly.in/question/25724416

2. Prove that div grad r^n = n(n+1) r^n-2

https://brainly.in/question/24594228

Answered by anshu24497
0

 \huge \rm {\underline{\underline{ \red{Solution}}}}

Given that :

 \boxed{{ \purple{p = x + y + z ,  \: q = y+z, \: r=z}}}

The required Jacobian :

 \rm{ \color{navy}{ = J}}

 { \color{navy}{= \displaystyle \frac{ \partial (p,q,r)}{ \partial(x,y,z)}=∂(x,y,z)∂(p,q,r)}}</p><p>

\begin{gathered}{ \color{navy}{= \displaystyle\begin{vmatrix} \frac{ \partial p}{ \partial x} &amp; \frac{ \partial p}{ \partial y} &amp; \frac{ \partial p}{ \partial z} \\ \\ \frac{ \partial q}{ \partial x} &amp; \frac{ \partial q}{ \partial y} &amp; \frac{ \partial q}{ \partial z} \\ \\ \frac{ \partial r}{ \partial x} &amp; \frac{ \partial r}{ \partial y} &amp; \frac{ \partial r}{ \partial z} \end{vmatrix}}}\end{gathered}

\begin{gathered}{ \color{navy}{= \displaystyle\begin{vmatrix} 1 &amp; 1 &amp; 1\\ 0 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; 1 \end{vmatrix}}}\end{gathered}

Similar questions