Math, asked by charithayetukuri11, 1 month ago

The joint pdf of a bivariate random variable (X, Y) is
f(x, y) =
4xy, 0 < x < 1,0 < y < 1
,
0, Otherwise
Find P(X + Y < 1).​

Answers

Answered by ravilaccs
0

Answer:

The P(X + Y &lt; 1) is given by \frac{4}{9}

Step-by-step explanation:

Given:

$$f(X, Y)= \begin{cases}4 X Y &amp; ; 0 \leq X \leq 1,0 \leq Y \leq 1 \\ 0 &amp; ; \text { otherwise }\end{cases}$$

To find: P(X + Y &lt; 1).

Step 1:

\begin{aligned}&amp;E(X Y)=\int_{0}^{1} \int_{0}^{1} X Y .4 X Y \mathrm{~d} x d y \\&amp;E(X Y)=4 \int_{0}^{1} \int_{0}^{1} X^{2} Y^{2} \mathrm{~d} x d y \\&amp;E(X Y)=4 \int_{0}^{1} Y^{2}\left[\frac{X^{3}}{3}\right]_{0}^{1} d y \\&amp;E(X Y)=4 \int_{0}^{1} Y^{2}\left(\frac{1}{3}\right) d y \\&amp;E(X Y)=\frac{4}{3}\left[\frac{Y^{3}}{3}\right]_{0}^{1} \\&amp;E(X Y)=\frac{4}{3}\left(\frac{1}{3}\right) \\&amp;\mathbf{E}(\mathbf{X Y})=\frac{4}{9}\end{aligned}

Answered by fairyepsilon7532
1

Answer:

p(x+y< 1)= \frac{1}{6}

Step-by-step explanation:

Given the joint pdf is

f(x,y)=\left \{ {{4xy ,0 &lt; x &lt; 1, 0 &lt; y &lt; 1} \atop {0, otherwise}} \right.\\     \\ P(x+y &lt; 1)=\int\limits^1_0\int\limits^{1-x}_0 {4xy} \, .dx .dy\\  =\int\limits^1_0 {4x[\frac{y^{2}}{2} ] ^{1-x} _{0} } \, dx

=2\int\limits^1_0 {x(1-x)^{2} } \, .dx \\=2\int\limits^1_0 {x-2x^{2} +x^{3}  } \, .dx \\\\=2[\frac{x^{2} }{2}-\frac{2x^{3} }{3} +\frac{x^{4} }{4} ]^{1}__{0}

2[\frac{1}{2} -\frac{2}{3} +\frac{1}{4} ] \\\\=2[\frac{6-8+3}{12} ] \\=2\frac{1}{12} \\=\frac{1}{6} .

Therefore,P(x+y<1)= \frac{1}{6} .

#SPJ3

Similar questions