The kinetic energy of an electron is 5×10^-5 eV. Calculate the wavelength of the wave associated with the electron. The mass of the electron may be taken as 10^-30kg
Answers
Explanation:
Kinetic energy of an electron = 5×\sf10^{-5}10
−5
eV
⏭ To Find:
✏ de-Broglie wavelength associated with electron.
⏭ Formula:
✏ Formula of de-Broglie wavelength in terms of kinetic energy and mass of particle is given by
\red{\circ} \: \underline{ \boxed{ \bold{ \sf{ \blue{ \lambda = \dfrac{h}{ \sqrt{2m(KE)}}}}}}} \: \red{ \circ}∘
λ=
2m(KE)
h
∘
⏭ Terms indication:
✏ \lambdaλ denotes wavelength
✏ h denotes plank's constant
✏ m denotes mass of particle
✏ KE denotes kinetic energy associated with particle
⏭ Conversation:
✏ KE = 5×\sf10^{-5}10
−5
eV = 8×\sf10^{-24}10
−24
J
⏭ Calculation:
\begin{lgathered}\mapsto \: \lambda = \dfrac{6.626 \times {10}^{ - 34} }{ \sqrt{2 \times 9.109 \times {10}^{ - 31} \times 8 \times {10}^{ - 24} } } \\ \\ \mapsto \sf \: \lambda = \dfrac{6.626 \times {10}^{ - 34} }{ \sqrt{14.574 \times {10}^{ - 54} } } \\ \\ \mapsto \sf \: \lambda = \frac{6.626 \times {10}^{ - 34} }{3.817 \times {10}^{ - 27} } \\ \\ \mapsto \sf \: \lambda = 1.735 \times {10}^{ - 7} \\ \\ \mapsto \: \underline{ \boxed{ \bold{ \sf{ \orange{ \large{ \lambda = 173.5 \: nm}}}}}} \: \red{ \bigstar}\end{lgathered}
↦λ=
2×9.109×10
−31
×8×10
−24
6.626×10
−34
↦λ=
14.574×10
−54
6.626×10
−34
↦λ=
3.817×10
−27
6.626×10
−34
↦λ=1.735×10
−7
↦
λ=173.5nm
★