Physics, asked by Anonymous, 6 months ago

The kinetic energy of an object of mass 'm' moving with a velocity of 5 m/s is 25 J. what will be its kinetic energy when its velocity is increased three times.​

Answers

Answered by IdyllicAurora
58

Answer :-

\:\\\large{\boxed{\sf{Firstly,\;let's\;understand\;the\;concept\;used\;:-}}}

Here the concept ot Kinetic Energy has been used. We see that Kinetic Energy is the half of product of mass and velocity square. Firstly, we can find the mass of the from the equation of Kinetic Energy and then we can can apply that into the new equation where there is thrice of kinetic energy.

Let's do it !!

_________________________________________________

Formula Used :-

\:\\\large{\boxed{\sf{i.)\;\;\;Kinetic\;Energy\;=\;\bf{\dfrac{1}{2}\:\times\:m\:\times\:v^{2}}}}}

\:\\\large{\boxed{\sf{ii.)\;\;\;Kinetic\;Energy\;=\;\bf{\dfrac{1}{2}\:\times\:m\:\times\:(3\:\times\:v)^{2}}}}}

_________________________________________________

Question :-

The kinetic energy of an object of mass 'm' moving with a velocity of 5 m/s is 25 J. What will be its kinetic energy when its velocity is increased three times.

_________________________________________________

Solution :-

Given,

» Kinetic Energy of the body = 25 Joules

» Velocity of the body = 5 m/sec

_________________________________________________

~ For the mass of the body :-

\:\\\qquad \large{\sf{:\longrightarrow\;\;\;Kinetic\;Energy\;=\;\bf{\dfrac{1}{2}\:\times\:m\:\times\:v^{2}}}}

\:\\\qquad \large{\sf{:\longrightarrow\;\;\;25\;=\;\bf{\dfrac{1}{2}\:\times\:m\:\times\:(5)^{2}}}}

\:\\\qquad \large{\sf{:\longrightarrow\;\;\;25\;=\;\bf{\dfrac{1}{2}\:\times\:m\:\times\:25}}}

\:\\\qquad \large{\sf{:\longrightarrow\;\;\;m\;=\;\bf{\dfrac{2}{1}\:\times\:\dfrac{25}{25}\:\;=\:\;\underline{\underline{2\;\;Kg}}}}}

\:\\\large{\boxed{\boxed{\tt{Hence,\;\;mass\;\;of\;\;the\;\;object\;\;is\;\;\boxed{\bf{2\;\;Kg}}}}}}

_________________________________________________

~ For the Kinetic Energy of the body when velocity is three times :-

\:\\\qquad \large{\sf{:\longrightarrow\;\;\;Kinetic\;Energy\;=\;\bf{\dfrac{1}{2}\:\times\:m\:\times\:3\:\times\:v^{2}}}}

\:\\\qquad \large{\sf{:\longrightarrow\;\;\;Kinetic\;Energy\;=\;\bf{\dfrac{1}{2}\:\times\:2\:\times\:(3\:\times\:5)^{2}}}}

\:\\\qquad \large{\sf{:\longrightarrow\;\;\;Kinetic\;Energy\;=\;\bf{\dfrac{1}{2}\:\times\:2\:\times\:(15)^{2}}}}

\:\\\qquad \large{\sf{:\longrightarrow\;\;\;Kinetic\;Energy\;=\;\bf{1\times\:225\;\;=\;\;\underline{\underline{225\;\;Joules}}}}}

\:\\\large{\underline{\underline{\rm{Thus,\;kinetic\;energy\;of\;the\;body\;when\;velocity\;is\;3\;times\;is\;\;\boxed{\bf{225\;\;Joules}}}}}}

_________________________________________________

More formulas to know :-

\:\\\sf{\leadsto\;\;\;Potential\;Energy\;=\;mgh}

\:\\\sf{\leadsto\;\;\;Heat\;Energy\;=\;Force\:\times\:Distance}

\:\\\sf{\leadsto\;\;\;Power\;=\;\:\dfrac{Work}{Time}}

\:\\\sf{\leadsto\;\;\;Pressure\;=\;\:\dfrac{Force}{Area}}

\:\\\sf{\leadsto\;\;\;Stress\;=\;\:\dfrac{Force}{Area}}

\:\\\sf{\leadsto\;\;\;Strain\;=\;\:\dfrac{Change\:in\:Dimension}{Original\:Dimension}}

\:\\\sf{\leadsto\;\;\;Coefficient\;of\;Elasticity\;=\;\:\dfrac{Stress}{Strain}}

\:\\\sf{\leadsto\;\;\;Impulse\;of\;Force\;=\;Force\:\times\:Time}

\:\\\sf{\leadsto\;\;\;Coefficient\;of\;Viscosity\;=\;\dfrac{Force\:\times\:Distance}{Area\:\times\:Velocity}}

\:\\\sf{\leadsto\;\;\;Pressure\;Gradient\;=\;\:\dfrac{Pressure}{Distance}}

\:\\\sf{\leadsto\;\;\;Force\;Constant\;=\;\:\dfrac{Force}{Displacement}}

\:\\\sf{\leadsto\;\;\;Velocity\;Gradient\;=\;\:\dfrac{Velocity}{Distance}}

Answered by Anonymous
39

Given:

  • Kinetic energy of an object of mass m = 25J
  • Object velocity , v = 5 m/s

To Find :

The Kinetic energy when object velocity is increased three times .

Solution :

Let the intital kinetic energy of object be \sf\:K_1=25J and initial velocity \sf\:v_1=v=5ms^{-1}

and \sf\:k_2 be kinetic energy of an object when it's Velocity \sf\:v_2=3v_1=15ms^{-1}

Initial Kinetic energy

\rm\:K_1=\dfrac{1}{2}m(v_1)^2

\sf\implies\:K_1=\dfrac{1}{2}mv^2..(1)

Kinetic energy when Velocity increase three times

\rm\:K_2=\dfrac{1}{2}m(v_2)^2

\sf\implies\:K_2=\dfrac{1}{2}m(3v)^2..(2)

Now ,

Divide Equation (1) & (2)

\sf\dfrac{K_1}{K_2}=\dfrac{\frac{1}{2}mv^2}{\frac{1}{2}m(3v)^2}

\sf\implies\dfrac{K_1}{K_2}=\dfrac{1}{9}

\sf\implies\dfrac{25}{K_2}=\dfrac{1}{9}

\sf\implies\:K_2=25\times9

\sf\implies\:K_2=225J


mdmsiwan: hey
mdmsiwan: kya Tum vansika se pyar karate ho
Similar questions