Math, asked by ItzDevikaHere, 2 months ago

The king, queen, jack of clubs is removed from a deck of 52 playing cards and the remaining cards are shuffled. a card is drawn from the remaining cards. Find the probability of getting a card of queen​.

Who will give correct and Explanative Answer I will mark he/she 's ANSWER as brainliest. ​

Answers

Answered by ItzBrainlyResponder
43

 \:\;\frak{ \maltese \: \: Given} \: \begin{cases} \star \: \: \sf \underline{Total \: number \: of \: playing \: cards \: in \: the \: deck \:  : \longrightarrow  \: \bf 52 \: playing \: cards.} \: \: \bigstar \\\star \: \: { \textsf{\textbf {\underline{The \: king, \: queen, \: jack \: of \: clubs \: are \: removed \: from \: the \: deck \: and \: remaining \: cards \: are \: shuffled.}}}} \: \: \bigstar \\ \star \: \:{ \sf{\underline{ \:Number \: of \:  card  \:  is \: drawn \: from \: the \: remaining \: cards  \:   : \longrightarrow\: \bf A_{(1) }}}} \: \: \bigstar\end{cases}

⠀⠀⠀ ━━━━━━━━━━━━━━━━━━⠀⠀⠀

 \\

Need To Find :

  • The Probability of getting a card of queen.

⠀⠀⠀ ━━━━━━━━━━━━━━━━━━⠀⠀⠀

\begin{gathered} \\ \end{gathered}

Let,

  • \bf{P_{(E)}}Probability of getting an event.
  • FFavourable Outcomes.
  • TTotal outcomes.

⠀⠀⠀ ━━━━━━━━━━━━━━━━━━⠀⠀⠀

\begin{gathered} \\ \end{gathered}

Key Concept :

  • Here, the key concept used in solving this question is the (knowledge of probability of occurance of an event).

Let's do it !!

⠀⠀⠀ ━━━━━━━━━━━━━━━━━━⠀⠀⠀

\\ \:\: \begin{gathered} \large \: \: \large \underline \frak{Formula \: Used \: : } \\ \end{gathered}

\bullet \: \: \: \: {{\textsf{\textbf{Probability  \: of  \: getting  \: an  \: event  }}}}\: =    \:   \frac{{ \textsf{ \textbf{Favourable \: outcomes}}}}{{ \textsf{ \textbf{Total \: outcomes}}}}   \\

: \longrightarrow\: \: \: \: \underline{ \boxed{\bf{P_{E} \:  =  \:  \frac{F}{T} }}} \: \: \bigstar

⠀⠀⠀━━━━━━━━━━━━━━━━━━⠀⠀⠀

 \\

\begin{gathered} \large\maltese \: \: \Large \underline \frak{ Solution \: : } \\ \\ \end{gathered}

 \dag \:  \:  \frak{ \:  \underline {Firstly,  \: finding \: the \:{ \textsf{ \textbf{ Favourable \:Outcomes \:   }}_{ \sf(F)}} : }} \\

No. of queens in the playing cards = 1.

Here, queen of club is removed , Then,

No. of queens left = 4 - 1 = 3.

.°. Favourable Outcomes 3.

✰❍ ⠀━━━━━━━━━━━━━━━━━━⠀❍ ✰⠀

 \\  \dag \:  \:  \frak{ \:  \underline {Secondly,  \: finding \: the \:{ \textsf{ \textbf{Total \: Outcomes }}_{ \sf(T)}} : }} \\

No. of playing cards in the deck = 52 playing cards.

Here, king, queen and jack of clubs are removed , Then,

Total Outcomes = 52 - (1 + 1 + 1) = 49

.°. Total Outcomes49.

✰❍ ⠀━━━━━━━━━━━━━━━━━━⠀❍ ✰⠀⠀

 \\ \begin{gathered} \dag\: \: \frak{ \: \underline {Substituting \: the \: values \: according \: to \: the \:given \: info \: : }} \\ \end{gathered} </p><p>

 :  \implies  {\sf{P_{(E)} \:  =  \:  \frac{F}{T} }}  \\\\\   \underline{ \underline{ \boxed {\bf{:  \longrightarrow \: P_{(E)} \:  =  \:  \frac{3}{49} }}  }} \:  \:  \bigstar

\begin{gathered} {\therefore \: \underline{\boldsymbol{ Hence, } {\rm\: the \:  } { \textsf{\textbf { probability \: of  \: getting  \: a  \: card  \: of  \: queen } }}{ \rm{ \: is \: }}{\bf\:  \frac{3}{49} .}}} \\ \\ \end{gathered}

⠀✰⠀⠀━━━━━━━━━━━━━━━━━━⠀⠀✰⠀

Kindly, slide left ☛ or right to see full Explanation.

Answered by anuragkumar8432rupdi
0

Answer:

\begin{gathered} \:\;\frak{ \maltese \: \: Given} \: \begin{cases} \star \: \: \sf \underline{Total \: number \: of \: playing \: cards \: in \: the \: deck \: : \longrightarrow \: \bf 52 \: playing \: cards.} \: \: \bigstar \\\star \: \: { \textsf{\textbf {\underline{The \: king, \: queen, \: jack \: of \: clubs \: are \: removed \: from \: the \: deck \: and \: remaining \: cards \: are \: shuffled.}}}} \: \: \bigstar \\ \star \: \:{ \sf{\underline{ \:Number \: of \: card \: is \: drawn \: from \: the \: remaining \: cards \: : \longrightarrow\: \bf A_{(1) }}}} \: \: \bigstar\end{cases} \end{gathered}

✠Given

Totalnumberofplayingcardsinthedeck:⟶52playingcards.

The king, queen, jack of clubs are removed from the deck and remaining cards are shuffled.

Numberofcardisdrawnfromtheremainingcards:⟶A

(1)

⠀⠀⠀ ━━━━━━━━━━━━━━━━━━⠀⠀⠀

\begin{gathered} \\ \end{gathered}

❍ Need To Find :

The Probability of getting a card of queen.

⠀⠀⠀ ━━━━━━━━━━━━━━━━━━⠀⠀⠀

\begin{gathered}\begin{gathered} \\ \end{gathered} \end{gathered}

❍ Let,

\bf{P_{(E)}}P

(E)

➠ Probability of getting an event.

F ➠ Favourable Outcomes.

T ➠ Total outcomes.

⠀⠀⠀ ━━━━━━━━━━━━━━━━━━⠀⠀⠀

\begin{gathered}\begin{gathered} \\ \end{gathered} \end{gathered}

★ Key Concept :

Here, the key concept used in solving this question is the (knowledge of probability of occurance of an event).

Let's do it !!

⠀⠀⠀ ━━━━━━━━━━━━━━━━━━⠀⠀⠀

✰\begin{gathered}\\ \:\: \begin{gathered} \large \: \: \large \underline \frak{Formula \: Used \: : } \\ \end{gathered} \end{gathered}

FormulaUsed:

\begin{gathered}\bullet \: \: \: \: {{\textsf{\textbf{Probability \: of \: getting \: an \: event }}}}\: = \: \frac{{ \textsf{ \textbf{Favourable \: outcomes}}}}{{ \textsf{ \textbf{Total \: outcomes}}}} \\\end{gathered}

∙Probability of getting an event =

Total outcomes

Favourable outcomes

: \longrightarrow\: \: \: \: \underline{ \boxed{\bf{P_{E} \: = \: \frac{F}{T} }}} \: \: \bigstar:⟶

P

E

=

T

F

⠀⠀⠀━━━━━━━━━━━━━━━━━━⠀⠀⠀

\begin{gathered} \\ \end{gathered}

\begin{gathered}\begin{gathered} \large\maltese \: \: \Large \underline \frak{ Solution \: : } \\ \\ \end{gathered} \end{gathered}

Solution:

\begin{gathered} \dag \: \: \frak{ \: \underline {Firstly, \: finding \: the \:{ \textsf{ \textbf{ Favourable \:Outcomes \: }}_{ \sf(F)}} : }} \\ \end{gathered}

Firstly,findingthe Favourable Outcomes

(F)

:

➠ No. of queens in the playing cards = 1.

Here, queen of club is removed , Then,

➠ No. of queens left = 4 - 1 = 3.

.°. Favourable Outcomes ➠ 3.

✰❍ ⠀━━━━━━━━━━━━━━━━━━⠀❍ ✰⠀

\begin{gathered} \\ \dag \: \: \frak{ \: \underline {Secondly, \: finding \: the \:{ \textsf{ \textbf{Total \: Outcomes }}_{ \sf(T)}} : }} \\ \end{gathered}

Secondly,findingthe Total Outcomes

(T)

:

➠ No. of playing cards in the deck = 52 playing cards.

Here, king, queen and jack of clubs are removed , Then,

➠ Total Outcomes = 52 - (1 + 1 + 1) = 49

.°. Total Outcomes ➠ 49.

✰❍ ⠀━━━━━━━━━━━━━━━━━━⠀❍ ✰⠀⠀

\begin{gathered} \\ \begin{gathered} \dag\: \: \frak{ \: \underline {Substituting \: the \: values \: according \: to \: the \:given \: info \: : }} \\ \end{gathered} < /p > < p > \end{gathered}

Substitutingthevaluesaccordingtothegiveninfo:

</p><p>

\begin{gathered} : \implies {\sf{P_{(E)} \: = \: \frac{F}{T} }} \\\\\ \underline{ \underline{ \boxed {\bf{: \longrightarrow \: P_{(E)} \: = \: \frac{3}{49} }} }} \: \: \bigstar\end{gathered}

:⟹P

(E)

=

T

F

:⟶P

(E)

=

49

3

\begin{gathered}\begin{gathered} {\therefore \: \underline{\boldsymbol{ Hence, } {\rm\: the \: } { \textsf{\textbf { probability \: of \: getting \: a \: card \: of \: queen } }}{ \rm{ \: is \: }}{\bf\: \frac{3}{49} .}}} \\ \\ \end{gathered} \end{gathered}

Hence,the probability of getting a card of queen is

49

3

.

⠀✰⠀⠀━━━━━━━━━━━━━━━━━━⠀⠀✰⠀

✰ Kindly, slide left ☛ or ☜ right to see full Explanation. ✰

Similar questions