Chemistry, asked by anshsadabad30, 9 months ago

The Ksp of FeS = 4 x 10^19 at
298 K. The minimum
concentration of H+ ions
required to prevent the
precipitation of FeS from a
0.01 M solution Fe+2 salt by
passing H2S
(Given H2S ka1×ka2 = 10^21)​

Answers

Answered by aakriti05
4

Answer:

Hope it helps

mrk me as BRAINLIEST

Attachments:
Answered by KaurSukhvir
1

"It seems this is what you are looking for"

The Ksp of FeS=4×10⁻¹⁹ at 298 K. The minimum concentration of H+ ions required to prevent the precipitation of FeS from a 0.01 M solution Fe²⁺ salt by passing H₂S(0.1M) (Given H₂S ka₁×ka₁=10⁻²¹)?

Answer:

The minimum concentration of H⁺ ions needed to prevent the precipitation of FeS would be equal to 1.6×10⁻³M.

Explanation:

Given for FeS the value of K_{sp}=4*10^{-19},

[Fe^{2+}]=0.01M and [H_{2}S]=0.1M

H_{2}S  ⇄  H^{+}+ HS^{-}

K_{a_{1}}}=\frac{[H^{+}][HS^{-}]}{[H_{2}S]}

Further, HS^{-}  ⇄  H^{+}+s^{2-}

K_{a_{2}}}=\frac{[H^{+}][S^{2-}]}{[HS^{-}]}

Given  K_{a_{1}}}*K_{a_{2}}}=10^{-21}                    ................(1)

Put the values equilibrium constants in above eq.(1)

\frac{[H^{+}][HS^{-}]}{[H_{2}S]} *\frac{[H^{+}][S^{2-}]}{[HS^{-}]}=10^{-21}

\frac{[H^{+}]^{2}[S^{2-}]}{[H_{2}S]} =10^{-21}                                  .............(2)

To find concentration of S^{2-}:

FeS   ⇄   F^{2+}+S^{2-}

K_{sp}=\frac{[Fe^{2+}][S^{2-}]}{[FeS]}

4*10^{-19}=\frac{[0.01][S^{2-}]}{(1)}

[S^{2-}]=4*10^{-17}

Put the above value in eq. (2)

\frac{[H^{+}]^{2}[4*10^{-17}]}{[0.1]} =10^{-21}\\{[H^{+}]^{2}}=\frac{10^{-5}}{4} \\{[H^{+}]}=1.6*10^{-3}M

Similar questions