Math, asked by parulpreet, 1 year ago

the ladder is 8 M long reaches a distance 8m from the top of the vertical flagstaff .At the foot of the ladder the elevation of the top of the flagstaff is 60° find the height of the flagstaff

Answers

Answered by mysticd
45

Answer:

 \red { Length \: of \: flagship }\green {= 12\:m}

Step-by-step explanation:

 Given \: Length \:of \: the \: ladder (AC) = 8m

 CD = 8 \:m

 \angle BAD = 60\degree

 Let \: BC = h \: m

 AB = x \:m

 In \: \triangle ABD ,\\\angle BAD + \angle B + \angle D = 180\degree

 \blue {( Angle \: sum \: Property )}

\implies \angle 60\degree + 90\degree + \angle D = 180\degree

\implies \angle D = 180\degree - 150\degree \\= 30\degree

 \angle BAD  = 60\degree

\implies \angle BAC + \angle CAD = 60\degree

\implies \angle BAC + \angle 30\degree = 60\degree

 \implies \angle BAC = 60 - 30 = 30\degree

 In \: \triangle BAD , \\tan \angle BAD = \frac{BD}{AB}

\implies tan \:60\degree = \frac{BD}{BA}

\implies \sqrt{3} = \frac{8+h}{x}

\implies x = \frac{8+h}{\sqrt{3}}\: --(1)

 In \: \triangle ABC , \\tan \:\angle BAC = \frac{BC}{BA}

\implies tan \:30\degree = \frac{h}{x}

\implies \frac{1}{\sqrt{3}} = \frac{h}{x}

\implies x = \sqrt{3} h \: ---(2)

 [ From \: (1) \:and \:(2) ]

 \implies \frac{8+h}{\sqrt{3}} = \sqrt{3} h

\implies 8+h = 3h

\implies 8 = 3h - h

\implies 8 = 2h

 \implies \frac{8}{2} = h

 \implies 4 = h

Therefore.,

 \red { Length \: of \: flagship }

 = h + 8 \\= 4 + 8 \\= \green { 12\:m }

•••♪

[tex]

Attachments:
Similar questions