Math, asked by garimabain, 2 months ago


The larger of two supplementary angle exceeds the smaller by 18°. find them.

Answers

Answered by itsprernaaaa
0

a + b = 180

a = b + 18

a + 18 + b = 180

2b = 162

b = 81

a = 81 + 18

a = 99

Two supplementary angles are 99 and 81 .

Answered by SachinGupta01
13

\bf \underline{ \underline{\maltese\:Given} }

The larger of two supplementary angle exceeds the smaller by 18°

\bf \underline{ \underline{\maltese\:To  \: find } }

 \sf \implies The \:  numbers =  \: ?

\bf \underline{ \underline{\maltese\:Solution } }

 \sf Let \:  us \:  assume \:  that,

 \sf \implies  Larger \:  angle \:  be \:  x

 \sf \implies  Smaller  \: angle  \: be \:  y

 \sf According \:  to \:  question,

 \sf \implies  x - y = 18 \:  \:  \:  \:  \:  \rm[Equation : 1]

 \sf \implies  x  + y = 180\:  \:  \:  \:  \:  \rm[Equation : 2]

 \bf \underline{Now},

 \sf By  \: equation : 1

 \sf \implies  x - y = 18

 \sf \implies  x  =  18  + y

 \sf  Putting  \: x  \: in \:  equation : 2

 \sf \implies  x  + y = 180

 \sf \implies  (18  + y)  + y = 180

 \sf \implies  18  + y  + y = 180

 \sf \implies  18  + 2y = 180

 \sf \implies  2y = 180  - 18

 \sf \implies  2y = 162

 \sf \implies  y =  \cancel\dfrac{162}{2}

 \bf \implies  y =  81

 \bf \underline{Now},  \sf substituting \:  value  \: of \:  y  \: in \:  equation : 1

 \sf \implies  x - y = 18

 \sf \implies  x - 81 = 18

 \sf \implies  x = 18  + 81

 \sf \implies  x = 99

 \sf \underline{So, value \:  of  \: x \:  is \:  99 \:  and \:  y  \: is  \: 81}

 \bf \underline{ Therefore},

 \sf \implies  Larger \:  angle \:    (x) = \bf 99^{\circ}

 \sf \implies  Smaller  \: angle  \:(  y ) =  \bf81^{\circ}

Similar questions