Math, asked by nitinbhai55555, 10 months ago

The larger of two supplementary angles exceeds the smaller by 18°. Find the angles.​

Answers

Answered by SamBroDpsg
2

Answer:

81°,99°

Step-by-step explanation:

Supplementary angles give a sum of 180°

Let's frame the equation that is,

(Let the smaller angle be x)

___________________________________________

x+x+18=180° (Supplementary angles)

___________________________________________

2x=180-18 (Shift. 18 to RHS and add both x together to form 2x)

2x=162°

___________________________________________

x=162/2

x=81

second angle=81+18=99°

___________________________________________

Please mark it as brainliest to support me

___________________________________________

EZ

Answered by TheVenomGirl
6

AnSwer:

Let the two angle be x and y.

According to the question,

 \sf \: x+y = 180 - - ---(1) \\  \sf \: x = y + 18 -- - --(2)

Substituting the value of eqn (2) in (1),

 : \implies \sf \:  \:  \:  x+y = 180 \\ \\   : \implies \sf \:  \:  \:(y+18)+y = 180 \\ \\  : \implies \sf \:  \:  \: 2y+ 18 = 180 \\ \\   : \implies \sf \:  \:  \:2y = 162 \\ \\  : \implies \sf \:  \:  \: { \underline{ \boxed{ \sf{ \purple{y= 81}}}}}

Similarly,

Substituting the value of y in eqn (2),

 : \implies \sf \: \:  \:  x=y+18 \\ \\   : \implies \sf \: \:  \: x=81+18  \\ \\ : \implies \sf \: \:  \: { \underline{ \boxed{ \sf{ \purple{x=99}}}}}

The 2 angles are 81° and 99°.

Similar questions