The largest cell of our body is?
a.Fat cell
b.Ostrich cell
c.Bone cell
d.Neuton
Answers
- Ostrich cell
Hope it helps you
Answer:
B. ostrich cell.
Explanation:
The worldwide epidemic of obesity and type 2 diabetes has greatly increased interest in the biology and physiology of adipose tissues. Adipose (fat) cells are specialized for the storage of energy in the form of triglycerides, but research in the last few decades has shown that fat cells also play a critical role in sensing and responding to changes in systemic energy balance. White fat cells secrete important hormone-like molecules such as leptin, adiponectin, and adipsin to influence processes such as food intake, insulin sensitivity, and insulin secretion. Brown fat, on the other hand, dissipates chemical energy in the form of heat, thereby defending against hypothermia, obesity, and diabetes. It is now appreciated that there are two distinct types of thermogenic fat cells, termed brown and beige adipocytes. In addition to these distinct properties of fat cells, adipocytes exist within adipose tissue, where they are in dynamic communication with immune cells and closely influenced by innervation and blood supply. This review is intended to serve as an introduction to adipose cell biology and to familiarize the reader with how these cell types play a role in metabolic disease and, perhaps, as targets for therapeutic development.
INTRODUCTION
The global epidemic in obesity and related disorders such as type 2 diabetes has fueled an explosion of interest in adipose (fat) cells. Adipose cells play several critical roles in systemic metabolism and physiology. There are at least two classes of fat cells—white and brown. White fat is specialized to store energy in the form of triglycerides, an especially efficient method because this class of molecules is highly energetic and stored anhydrously. On fasting, the release of fatty acids and glycerol to provide fuel for the rest of the body occurs via enzymatic hydrolysis called lipolysis. These crucial functions of fat, storage, and release of fatty acids are tightly controlled by the key hormones of the fed and fasted states—insulin and catecholamines. In addition to these