Math, asked by BrainlyButterfly57, 2 months ago

The largest number among
 \sqrt{2} , \sqrt[3]{3} \:  and \: \sqrt[4]{8}  is..

Answers

Answered by nitashreetalukdar
14

Step-by-step explanation:

2 is the answer.

hope it help you.

Answered by ItZzKhushi
3

{\huge{\underbrace{\overbrace {\color{aqua} {Question}}}}}

The largest number among

\sqrt{2} , \sqrt[3]{3} \: and \: \sqrt[4]{8} \:  is..

\huge{\underline{\mathtt{\red{A} \pink{N} \green{S} \blue{W} \purple{E} \orange{R}}}} \red♡

➪ \:  \sqrt{2}  = (2)^{ \frac{1}{2} }

➪ \sqrt[3]{3}  = (3 {)}^{ \frac{1}{3} }

➪ \sqrt[4]{8}  = (8 {)}^{ \frac{1}{4} }

⇒LCM of 2,3,4 = 12

⇒(2 {)}^{ \frac{1}{2} }, (3 {)}^{ \frac{1}{3} } ,(8 {)}^{ \frac{1}{4} }

⇒(2 {)}^{ \frac{6}{12} } ,(3 {)}^{ \frac{4}{12} } ,(8 {)}^{ \frac{3}{12} }

⇒( {2}^{6}  {)}^{ \frac{1}{12} } ,( {3}^{4}  {)}^{ \frac{1}{12}  } ,( {8}^{3}  {)}^{ \frac{1}{12} }

⇒(64 {)}^{ \frac{1}{12} } ,(81 {)}^{ \frac{1}{12} } ,(512 {)}^{ \frac{1}{12} }

⇒(512 {)}^{ \frac{1}{12} } is the largest

➪So,  \sqrt[4]{8} is the largest..

Similar questions