Math, asked by sureshc1842007, 11 months ago

the largest number which divides 101 and 76 leaving remainders 3 and 6 respectively, is=?​

Answers

Answered by mysticd
1

 Given \:two \:numbers \:101\:and \:76

 \begin {tabular} { | c | c | c | }</p><p>\cline {1-3} number &amp; remainder &amp; new number\\</p><p>\cline {1-3} 101&amp; 3&amp;101-3 = 98 \\</p><p>\cline {1-3} 76 &amp; 6 &amp; 76 - 6 = 70 \\</p><p>\cline {1-3}</p><p> \end {tabular}

 Now, \underline { Find \:the \:HCF \:of \:98\:and \:70: }

 98 = 2 \times 7\times 7 \\70 = 2\times 5 \times 7

 HCF (98,70) = 2\times 7 = 14

Therefore.,

 The \:largest \:number \:which\: divides\: 101\\ and\: 76\: leaving\: remainders\: 3\: and\: 6\\ respectively, \:is \green {= 14 }

•••♪

Similar questions