Math, asked by llalamrit561, 4 months ago

the largest value of 5sin theta+9 is ___.​

Answers

Answered by amitnrw
5

Given :  5sinθ + 9

To Find : largest value  

Solution

5sinθ + 9

sinθ range is [-1 , 1]

maximum value of sinθ = 1

Hence 5sinθ + 9

= 5(1) + 9

= 14

Largest Value is 14

largest value of 5sinθ+9 is 14

f(θ) = 5sinθ + 9

f'(θ) = 5cosθ

5cosθ  = 0

=> θ = π/2 , 3π/2

f''(θ) = -5Sinθ

f''  (π/2) = -5Sinπ/2 = - 5 < 0  Hence maximum value at  π/2

f''  (3π/2) = -5Sin3π/2 = 5 > 0  Hence minimum value at  3π/2

f(π/2) = 5sinπ/2 + 9  = 5 + 9 = 14     largest value

f(3π/2) = 5sinπ/2 + 9  = -5 + 9 =  4   Smallest Value

Learn More:

The maximum value of the function 4 cosx+3 sinx+20 *25273045 ...

https://brainly.in/question/28919224

The maximum value of the function 4 cosx+3 sinx+20 *25273045 ...

https://brainly.in/question/28853600

Answered by pulakmath007
4

SOLUTION

TO DETERMINE

The largest value of

 \sf{5 \sin \theta \:  + 9}

EVALUATION

SOLVE USING CONCEPT OF DIFFERENTIATION

Let

 \sf{y = 5 \sin \theta \:  + 9}

Differentiating both sides with respect θ to we get

 \displaystyle \sf{ \frac{dy}{d \theta} = 5 \cos \theta }

Again Differentiating both sides with respect θ to we get

 \displaystyle \sf{ \frac{ {d}^{2} y}{d  { \theta}^{2} } =  - 5 \sin \theta }

For maximum value of y we have

 \displaystyle \sf{ \frac{dy}{d \theta} = 0 }

 \implies \displaystyle \sf{  5 \cos \theta  = 0}

 \implies \displaystyle \sf{   \theta  =  \frac{\pi}{2}  \: , \:  \frac{3\pi}{2} }

Now

 \displaystyle \sf{ \frac{ {d}^{2} y}{d  { \theta}^{2} } \bigg| _{ \theta =  \frac{\pi}{2} } =  - 5  &lt; 0}

 \displaystyle \sf{Hence  \:y  \: has  \: maximum  \: value \:  at \:   \theta = \frac{\pi}{2} \:   }

 \displaystyle \sf{ \frac{ {d}^{2} y}{d  { \theta}^{2} } \bigg| _{ \theta =  \frac{3\pi}{2} } =  5  &gt; 0}

 \displaystyle \sf{Hence  \:y  \: has  \: minimum \: value \:  at \:   \theta = \frac{3\pi}{2} \:   }

Hence the largest ( maximum) value

 \displaystyle \sf{ y \bigg| _{ \theta =  \frac{\pi}{2} } =  5 \sin \:  \frac{\pi}{2}    + 9}

 = 5 + 9

 = 14

FINAL ANSWER

The largest value of  \sf{(5 \sin \theta \:  + 9}) \:  \:  \: is \:  \: \:  14

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If 270° <teta< 360°and cos teta=1/4 find teta/2

https://brainly.in/question/29137185

Similar questions