Math, asked by nandini756365, 3 months ago

The lateral surface area of a cube is 256 m³. The volume of the cube is
(a) 512 m³
(b) 64 m³
(c) 216 m³
(d) 256 m³​

Answers

Answered by Aryan257553
32

ANSWER

Given, lateral surface area of a cube =256 m2

Lateral surface area of cube=4( edge)2

Volume of cube=( edge)3

∴4(edge)2=256

∴ edge =8

Volume of cube=(8)3=512 m3

Answered by ShírIey
66

Given that,

  • Lateral surface area of a cube is 256 m³.

\dag\;{\underline{\frak{As \ we \ know \ that,}}}\\ \\

⠀⠀⠀

\star\:\boxed{\sf{\pink{Lateral \ surface \ area = 4(side)^2}}}

⠀⠀⠀⠀

And, ⠀

  • we've to find out the volume of the cube.

⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀

:\implies\sf 4(side)^2 = 256\\\\\\:\implies\sf (side)^2 = \cancel\dfrac{256}{4} \\\\\\:\implies\sf (side)^2 = 64 \\\\\\:\implies\sf side = \sqrt{64} \\\\\\:\implies{\underline{\boxed{\frak{\purple{\: side = 8 \ cm\:}}}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀

\dag\;{\underline{\frak{Formula\:of\: Volume \ of \ cube \:is\:given\:by,}}}\\ \\

⠀⠀⠀⠀

\star\:\boxed{\sf{\pink{Volume \ of \ cube = (side)^3}}}

⠀⠀⠀⠀

Now,

⠀⠀⠀⠀

:\implies\sf Volume_{(cube)} = (side)^3\\\\\\:\implies\sf 8 \times 8 \times 8 \\\\\\:\implies{\underline{\boxed{\frak{\purple{\: 512 \: m^3 \: }}}}}

⠀⠀⠀⠀

\therefore\:{\underline{\sf{Volume \ of \ the \ cube \ is \: \bf{512 \  m^3}.}}}

Similar questions