Math, asked by TheIron0man, 9 hours ago

The lateral surface area of a cube is 324 cm ² . Find its volume and total surface area​

Answers

Answered by Anonymous
47

Given :

  • Lateral Surface Area of Cube = 324 cm²

 \\ {\underline{\rule{200pt}{3pt}}}

To Find :

  • Volume of the Cube = ?
  • Total Surface Area of the Cube = ?

 \\ {\underline{\rule{200pt}{3pt}}}

Solution :

~ Formula Used :

  • Lateral Surface Area :

\large{\red{\dashrightarrow}} \: \: {\underline{\boxed{\purple{\sf{ Lateral \: Surface \: Area {\small_{(Cube)}} = 4 a² }}}}}

  • Volume :

\large{\red{\dashrightarrow}} \: \: {\underline{\boxed{\purple{\sf{ Volume{\small_{(Cube)}} = a³ }}}}}

  • Total Surface Area :

\large{\red{\dashrightarrow}} \: \: {\underline{\boxed{\purple{\sf{ Total \: Surface \: Area {\small_{(Cube)}} = 6a² }}}}}

 \\ {\qquad{\rule{150pt}{1pt}}}

~ Calculating the Side :

{\longmapsto{\qquad{\sf{ LSA = 4a² }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ 324 = 4 \times a² }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ \cancel\dfrac{324}{4} = a² }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ 81 = a² }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ \sqrt{81} = a }}}} \\ \\ \ {\qquad{\textsf{ Side of the Cube = {\pink{\sf{ 9 \: cm}}}}}}

 \\ {\qquad{\rule{150pt}{1pt}}}

~ Calculating the Volume :

{\longmapsto{\qquad{\sf{ Volume = a³ }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Volume = 9³ }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Volume = 9 \times 9 \times 9 }}}} \\ \\ \ {\qquad{\textsf{ Volume of the Cube = {\green{\sf{ 729 \: cm³ }}}}}}

 \\ {\qquad{\rule{150pt}{1pt}}}

~ Calculating the Total Surface Area :

{\longmapsto{\qquad{\sf{ TSA = 6a² }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ TSA = 6 \times 9² }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ TSA = 6 \times 9 \times 9 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ TSA = 6 \times 81 }}}} \\ \\ \ {\qquad{\textsf{ Total Surface Area of the Cube = {\red{\sf{ 486 \: cm² }}}}}}

 \\ {\qquad{\rule{150pt}{1pt}}}

Therefore :

❝ Volume of the Cube is 729 cm³ and it's Total Surface Area is 486 cm² .❞

 \\ {\pink{\underline{\rule{75pt}{9pt}}}}{\blue{\underline{\rule{75pt}{9pt}}}}{\color{cyan}{\underline{\rule{75pt}{9pt}}}}

Answered by Anonymous
21

Answer:

Diagram :

\setlength{\unitlength}{4mm}\begin{picture}(10,6)\thicklines\put(0,1){\line(0,1){10}}\put(0,1){\line(1,0){10}}\put(10,1){\line(0,1){10}}\put(0,11){\line(1,0){10}}\put(0,11){\line(1,1){5}}\put(10,11){\line(1,1){5}}\put(10,1){\line(1,1){5}}\put(0,1){\line(1,1){5}}\put(5,6){\line(1,0){10}}\put(5,6){\line(0,1){10}}\put(5,16){\line(1,0){10}}\put(15,6){\line(0,1){10}}\put(4.6,-0.5){\bf\large{9\ cm}}\put(13.5,3){\bf\large{9\ cm}}\put(-4,5.8){\bf\large{9\ cm}}\end{picture}

↝ The diagram of cube is given above. See this latex diagram on website Brainly.in.

\begin{gathered}\end{gathered}

Given :

  • ➠ The lateral surface area of a cube is 324 cm².

\begin{gathered}\end{gathered}

To Find :

  • ➠ Side
  • ➠ Volume
  • ➠ Lateral surface area

\begin{gathered}\end{gathered}

Concept :

↝ Here the concept of lateral surface area of cube has been used. We've been given that the lateral surface area of cube is 324 cm². With this information, we've been asked to find out the side, LSA and volume of the cube.

\begin{gathered}\end{gathered}

Using Formulas :

{\longrightarrow{\underline{\boxed{\sf{ LSA \: of \: cube= 4{a}^{2} }}}}}

{\longrightarrow{\underline{\boxed{\sf{ Volume =  {a}^{3}}}}}}

{ \longrightarrow{\underline{\boxed{\sf{TSA \: of \: cube= 6 {a}^{2}}}}}}

  • → a = side
  • → V = Volume
  • → LSA = Lateral surface area
  • → TSA = Total surface area

\begin{gathered}\end{gathered}

Solution :

Finding, the side of cube by substituting the values in the formula :

\longrightarrow \: \:{\sf{LSA \: of \: cube = 4(a)^{2}}}

\longrightarrow \: \:{\sf{324 = 4(a)^{2}}}

\longrightarrow \: \:{\sf{(a)^{2} = {\dfrac{324}{4}}}}

\longrightarrow \: \:{\sf{(a)^{2} =   \cancel{\dfrac{324}{4}}}}

\longrightarrow \: \:{\sf{(a)^{2} = 81}}

\longrightarrow \: \:{\sf{a = \sqrt{81} }}

\longrightarrow \: \:{\sf{a = \sqrt{9 \times 9}}}

\longrightarrow \: \:{\sf{a = 9 \: cm}}

\bigstar \: {\red{\underline{\boxed{\sf{Side  \: of  \: cube = 9  \: cm}}}}}

∴ The side of cube is 9 cm.

\rule{300}{1.5}

Finding the volume of cube by substituting the values in the formula :

\longrightarrow \:  \:{\sf{ Volume \: of \: cube =  {a}^{3}}}

\longrightarrow \:  \:{\sf{ Volume  \: of \: cube=  {9}^{3}}}

\longrightarrow \:  \:{\sf{ Volume  \: of \: cube=  {9 \times 9 \times 9}}}

\longrightarrow \:  \:{\sf{ Volume  \: of \: cube=  {81 \times 9}}}

\longrightarrow \:  \:{\sf{ Volume  \: of \: cube= 729\:  {cm}^{3}}}

\bigstar \: {\red{\underline{\boxed{\sf{Volume  \: of \:  cube = 729 \:  {cm}^{3}}}}}}

∴ The volume of cube is 729 cm³.

\rule{300}{1.5}

Finding the total surface area of cube by substituting the values in the formula :

\longrightarrow \: \: {\sf{TSA \: of \: cube = 6(a)^{2}}}

\longrightarrow \: \: {\sf{TSA \: of \: cube = 6(9)^{2}}}

\longrightarrow \: \: {\sf{TSA \: of \: cube = 6(9 \times 9)}}

\longrightarrow \: \: {\sf{TSA \: of \: cube = 6(81)}}

\longrightarrow \: \: {\sf{TSA \: of \: cube = 6 \times 81}}

\longrightarrow \: \: {\sf{TSA \: of \: cube = 486 \:  {cm}^{2}}}

\bigstar \: {\red{\underline{\boxed{\sf{TSA \: of \: cube = 486\: {cm}^{2}}}}}}

∴ The total surface area of cube is 486 cm².

\begin{gathered}\end{gathered}

Learn More :

\begin{gathered}\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}\end{gathered}

 \rule{220pt}{3pt}

Similar questions