Math, asked by shuchitamanojmittal, 1 day ago

The lateral surface area of a cuboid is 324 cmIts height is 9 cm, breadth is 5 cm. Find the volume of the cuboid. ​

Answers

Answered by anant2276
3

Answer:

Here you go mate

Step-by-step explanation:

Volume :- lbh

9x5x9= 405

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that

  • Lateral surface area of cuboid = 324 \rm \:cm^2

  • Height of cuboid, h = 9 cm

  • Breadth of cuboid, b = 5 cm

Let assume that

  • Length of cuboid =  l cm

We know,

Lateral surface area of cuboid of length l, breadth b and height h is given by

\boxed{ { \:LSA_{(Cuboid)} \:  =  \: {2 \times (l + b) \times h} \: }} \\

So, on substituting the values, we get

 \: 2(l + 5) \times 9 = 324 \\

 \: 2(l + 5)= 36\\

 \: l + 5= 18\\

\implies \:l \:  =  \: 13 \: cm \:  \\

We know, Volume of cuboid of length l, breadth b and height h is given by

\boxed{ { \:Volume_{(Cuboid)} \:  =  \: l \times b \times h \: }} \\

So, on substituting the values, we get

 \: Volume_{(Cuboid)} \:  =  \: 13 \times 5 \times 9 \\

\rm\implies \:\boxed{ \bf{ \:Volume_{(Cuboid)} = 585 \:  {cm}^{3} \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions