Math, asked by shawr4416, 3 months ago

.The lateral surface area of a cylinder of height 21 cm is 924 cm2
. Find its radius
of the base and its volume.

Answers

Answered by Anonymous
34

Given :

  • Lateral surface Area = 924 cm²
  • Height of Cylinder = 21 cm

 \\ \rule{200pt}{3pt}

To Find :

  • Radius of the Cylinder = ?
  • Volume of Cylinder = ?

 \\ \rule{200pt}{3pt}

Solution :

Formula Used :

  •  {\underline{\boxed{\purple{\sf{ Lateral \; Surface \; Area = 2 \pi rh }}}}}

  •  {\underline{\boxed{\purple{\sf{ Volume \; of \; Cylinder = \pi {r}^{2} h }}}}}

Where :

  •  {\sf{ \pi = \dfrac{22}{7} }}

  • ➟ r = Radius
  • ➟ h = Height

 \\ \qquad{\rule{150pt}{1pt}}

Calcuting the Radius :

 \begin{gathered} :\longmapsto \; \; \sf { LSA = 2 \pi rh } \\ \end{gathered}

 \begin{gathered} :\longmapsto \; \; \sf { 924 = 2 \times \dfrac{22}{7} \times r \times 21 } \\ \end{gathered}

 \begin{gathered} :\longmapsto \; \; \sf { 924 = 2\times \dfrac{22}{\cancel7} \times r \times \cancel{21} } \\ \end{gathered}

 \begin{gathered} :\longmapsto \; \; \sf { 924 = 2 \times 22 \times r \times 3} \\ \end{gathered}

 \begin{gathered} :\longmapsto \; \; \sf { 924 = 44 \times r \times 3} \\ \end{gathered}

 \begin{gathered} :\longmapsto \; \; \sf { \dfrac{924}{44} = r \times 3} \\ \end{gathered}

 \begin{gathered} :\longmapsto \; \; \sf { \cancel\dfrac{924}{44} = r \times 3} \\ \end{gathered}

 \begin{gathered} :\longmapsto \; \; \sf { 21 = r \times 3} \\ \end{gathered}

 \begin{gathered} :\longmapsto \; \; \sf { \dfrac{21}{3} = r } \\ \end{gathered}

 \begin{gathered} :\longmapsto \; \; \sf { \cancel\dfrac{21}{3} = r } \\ \end{gathered}

 \begin{gathered} \; \; {\qquad \; \; {\therefore \; \; {\underline{\boxed{\pmb{\red{\frak { Radius = 7 \; cm }}}}}}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

Calcuting the Volume :

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = \pi {(r)}^{2} h } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = \dfrac{22}{7} \times {(7)}^{2} \times 21} \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = \dfrac{22}{7} \times 7 \times 7 \times 21} \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = \dfrac{22}{\cancel7} \times \cancel7 \times 7 \times 21} \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = 22 \times 7 \times 21} \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Volume = 22 \times 147} \\ \end{gathered}

 \begin{gathered} \; \; {\qquad \; \; {\therefore \; \; {\underline{\boxed{\pmb{\green{\frak { Volume = 3234 \; {cm}^{3} }}}}}}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

Therefore :

❛❛ Radius of the base is 7 cm and its volume is 3234 cm³ . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by vekariakandarp
0

Answer:

7cm and 3234cm^3

Step-by-step explanation:

Given :

Lateral surface Area = 924 cm²

Height of Cylinder = 21 cm

To Find :

Radius of the Cylinder = ?

Volume of Cylinder = ?

Solution :

✯ Formula Used :

Where :

➟  

➟ r = Radius

➟ h = Height

✯ Calcuting the Radius :

✯ Calcuting the Volume :

✯ Therefore :

❛❛ Radius of the base is 7 cm and its volume is 3234 cm³

Please Mark Me As Brainlist

Similar questions