Math, asked by rakhisingh7136, 7 months ago

the lateral surface area of a cylinder of length 14 m is 220m^2. find the volume of a cylinder​

Answers

Answered by tusharraj77123
4

Answer:

Given :

\textsf{Length of the cylinder = Height = 14 m}

\sf{Lateral\:surface\:area\:of\:the\:cylinder={220}^{2}}

To find :

\textsf{Volume of the cylinder}

Taken :

First find the radius to find the radius use this formula .

 \sf{ \boxed{2\pi \: rh =  220}}

Where,

v = Volume

r = Radius

h = Height

After that to find the volume of the cylinder use this formula :

 \sf{ \boxed{v  = \pi \:  {r}^{2} h}}

Solution :

Radius :

\sf \implies \: 2 \times  \dfrac{22}{7}  \times r \times 14 = 220

  \:  \:  \:  \:     \\

 \sf \implies2 \times  \dfrac{22}{ \cancel7}  \times  { \cancel{14}}^ {2} \times r = 220

 \:  \:  \\

 \sf \implies88  \times r = 220

 \:  \:  \\

 \sf \implies88 r = 220

 \:  \:  \\

 \sf \implies \: r =  \dfrac{ \cancel{220}}{ \cancel{88}}

 \:  \:  \\

 \sf \implies \: r =  \dfrac{5}{2}

Volume of the cylinder -:

v \sf \implies \dfrac{22}{7}  \times{( \dfrac{5}{2} )}^{2}  \times 14m

 \:  \:  \\

v \sf \implies \dfrac{22}{7}  \times ( \dfrac{5}{2}  \times  \dfrac{5}{2} ) \times 14m

 \:  \:  \\

 v \sf \implies \dfrac{ \cancel{22}}{ \cancel{7} } \times  \dfrac{25}{ \cancel{4}}  \times \cancel{ 14m}

 \:  \:  \\

v \sf \implies11 \times 25

 \:  \:  \\

v \sf \implies {275m}^{3}

Answer :

So , the volume of the cylinder is 275 m³.

Similar questions