Math, asked by Anonymous, 1 month ago

The lateral surface area of a hollow cylinder is 4224 cm². It is cut along its height and formed a rectangular sheet of width 32 cm. Find the perimeter and area of the area of the rectangular sheet.​

Answers

Answered by Anonymous
4

Step-by-step explanation:

\large \red{  \frak{ \sf  \frak{✇ \:  Given: -  }}}

  • Lateral Surface Area is 4224 cm².

  • Width of sheet = 32 cm.

\large \red{  \frak{ \  \frak{✇ \:To \: Find: - }}}

  • The perimeter of the sheet

  • The area of the sheet

\large \red{  \frak{ \  \frak{✇ \:Solution: -  }}}

\sf \:   \bigstar \: We \: have -

  • h = Height of the cylinder = Width of the sheet = 32 cm

  • Lateral surface are of the cylinder = 4224 cm²

\sf \bigstar \: Let \:  -  \\   \\

  • r be the radius of the base of the hollow cylinder.

So,

ACQ,

\tt \:  \therefore \: 2\pi rh = 4224 \\  \sf \: ➯ \: 2 \times  \frac{22}{7}  \times r \times 32 = 4224 \\ ➯ \sf \: r =  \cancel \frac{4224 \times 7}{2 \times 22 \times 32}  \\ \\   \sf \: ➯ \:  \large  \blue{\frak{r = 21 \: cm}}

Now,

\sf \: Length _{(sheet)} = 2\pi r \\  ➥ \sf \: Length _{(sheet)}  = 2 \times  \frac{22}{ \cancel7}  \times  \cancel{21} \\ ➥ \sf \: Length _{(sheet)}  = 2 \times 22 \times 3 \\ ➥ \bf \: \boxed{ \bf Length _{(sheet)}  =132 \: cm }

So,

\sf \:  Perimeter_{(sheet)} = 2(l + b) \\ ⇰ \sf \: Perimeter_{(sheet)} = 2(132 + 32) \\ ⇰\sf \:  Perimeter_{(sheet)} = 2 \times 164 \\ ⇰\bf \pink \large \frak{  \large \: \purple{ \boxed{ \green{ \frak{Perimeter_{(sheet) =  \large \: 328 \: cm}}}}}}

Also,

\sf \: Area  _{(sheet)}  = l \times b \\   ➛ \sf \: Area  _{(sheet)} = 132 \times 32 \\ ➛  \sf  \frak{  \pink{\boxed{ \large{ \green{\:  \frak{Area  _{(sheet)} = 4224  \: {cm}^{2} }}}}}}

 \tiny \color{fuchsia}\underline{\rm \therefore The\: Area_{(sheet)} \:and \:Perimeter_{(sheet)} \:is\: 4224 \:cm² \:and \:328 \:cm\: respectively. }

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Attachments:
Similar questions