Math, asked by hinasid9, 4 months ago

The lateral surface area of a solid rectangular box is 520 cm2

and its length , breadth

and height

are in the ratio 9:4:5. Find the total surface area of the box.​

Answers

Answered by Anonymous
16

\large\sf\underline{Correct\:question\::}

The lateral surface area of a solid rectangular box is 520\sf\:cm^{2} and its length , breadth and height are in the ratio 9:4:5. Find the total surface area of the box.

\large\sf\underline{Understanding\:the\:question\::}

Here in this question we are given the lateral surface area ( LSA ) of a solid rectangular box as 520\sf\:cm^{2} . We are also given the ratio of length, breadth and height as 9 : 4 : 5 . Using all these we need to calculate the total surface area ( TSA ) of that rectangular box . In order to solve this problem we need to first calculate the actual value of length, breadth and height , which can be done by using the formula for LSA and the given ratio . Then using the formula of TSA we can easily calculate TSA. So let's begin !

\large\sf\underline{Given\::}

  • Lateral surface area ( LSA ) = \sf\:520\:cm^{2}

  • Ratio of length, breadth and height = 9 : 4 : 5

\large\sf\underline{To\:find\::}

  • Total surface area ( TSA ) of the box = ??

\large\sf\underline{Assumption\::}

Let's assume that :

  • Length be 9a

  • Breadth be 4a

  • Height be 5a

\large\sf\underline{Solution\::}

We know that ,

\large\fbox\red{Lateral\:surface\:area\:=\:2h(l+b)}

  • Let's substitute the given value of LSA and assumed value of l, b and h in the formula

\sf\implies\:520\:=2 \times 5a(9a+4a)

\sf\implies\:520\:=2 \times 5a \times 13a

\sf\implies\:520\:=2 \times 65a^{2}

\sf\implies\:520\:=130a^{2}

\sf\:oR\:130a^{2}=\:520

\sf\implies\:a^{2}=\frac{520}{130}

\sf\implies\:a^{2}=\cancel{\frac{520}{130}}

\sf\implies\:a^{2}= 4

\sf\implies\:a= \sqrt{4}

\large{\mathfrak\purple{\implies\:a=2\:cm}}

Now let's substitute the value of a in the assumed value of l, b and h :

◎ Length = 9a = \sf\:9 \times 2 = \small{\underline{\boxed{\mathrm\pink{18\:cm}}}}

◎ Breadth = 4a = \sf\:4 \times 2 = \small{\underline{\boxed{\mathrm\pink{8\:cm}}}}

◎ Height = 5a = \sf\:5 \times 2 = \small{\underline{\boxed{\mathrm\pink{10\:cm}}}}

Now we know ,

\large\fbox\red{Total\:surface\:area\:=\:2(lb+bh+lh)}

  • Let's substitute the value of l, b and h in the formula

\sf\implies\:TSA\:=\:2[(18 \times 8) + (8 \times 10) + (18 \times 10)]

\sf\implies\:TSA\:=\:2[144+ 80 + 180]

\sf\implies\:TSA\:=\:2[144 + 260]

\sf\implies\:TSA\:=\:2[404]

\sf\implies\:TSA\:=\:2 \times 404

\large{\mathfrak\purple{\implies\:TSA\:=\:808\:cm^{2}}}

‎┌────── ⋆⋅✦⋅⋆ ──────┐

⠀⠀⠀‎⠀⠀{\sf{{\green{Final\:AnsWers:}}}}

  • Length = 18cm

  • Breadth = 8cm

  • Height = 10cm

  • TSA = \sf\:808\:cm^{2}

└────── ⋆⋅✦⋅⋆ ──────┘

_________________________________⚔

Scroll left to right to view the answer properly !¡

!! Hope it helps !!

Similar questions