Math, asked by hinasid9, 3 months ago

The lateral surface area of a solid rectangular box is 520 cm2

and its length , breadth

and height

are in the ratio 9:4:5. Find the total surface area of the box.​

Answers

Answered by charansepurip5eog9
2

Answer:

TSA is 808

Step-by-step explanation:

pls mark as brainlist and rate the answer

Attachments:
Answered by Anonymous
37

Given:

  • The lateral surface area of a solid rectangular box is 520 cm²

  • It's length,breadth and it's hieght are in the ratio 9:4:5

 \\

To Find:

  • The total surface area of the cubiod

 \\

Solution:

 \\

❍ Let's Assume that,

  • Length of the cubiod is {\pink{\bf{9a}}}

  • Breath of the cubiod is {\blue{\bf{4a}}}

  • hieght of the cubiod is {\gray{\bf{5a}}}

 \\

↦ As we Know that,

 \\

 \star \: { \underline{ \boxed{ \sf{lateral \: surface \: area \: of \: a \: cuboid = 2h(l + b)}}}}

 \\

Where,

  • H stands for {\pink{\bf{Hieght}}}

  • L stands for {\gray{\bf{Length}}}

  • B stands for {\blue{\bf{Breadth}}}

 \\

Now, let's substitute the assumesd values:

 \\

\longrightarrow \sf \: 520 {cm}^{2}  = 2 \times 5a (9a + 4a)    \\  \\  \\ \longrightarrow \sf \: 520 {cm}^{2}  = 10a \times 13a \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\ \longrightarrow \sf520 {cm}^{2}  = 130 { a}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\  \\  \\ \longrightarrow \sf \:  {a}^{2}  =   \cancel\frac{520}{130}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \\  \\  \\ \longrightarrow \sf {a}^{2}  = 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ \longrightarrow \sf \: a =  \sqrt{4} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\ \longrightarrow { \orange{\sf{a = 2\bigstar}} }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

Therefore,

  • \leadsto {\sf{\pink{Length = 9 \times a = 18cm}}}

  • \leadsto {\sf{\pink{Breadth = 4 \times a = 8cm}}}

  • \leadsto {\sf{\pink{Length = 5 \times a = 10cm}}}

 \\

As we've found the dimensions let's find the total surface area now,

 \\

As we know that,

 \\

 \star \: { \underline{ \boxed{ \sf{total \: surface \: area \: of \: a \: cuboid = 2(lb + bh + hl)}}}}

 \\

Let's substitute,

 \longrightarrow \tt \: T.S.A = 2(18 \times 8 + 8 \times 10 + 10 \times 18) \\  \\  \\  \longrightarrow \tt \: T.S.A = 2(144 + 80 + 180) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow \tt \: \: T.S.A = 2(404) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow{ \orange{ \tt \: T.S.A = 808 {cm}^{2}  \bigstar}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

Hence,

{\longrightarrow }\sf the\: total \:surface \:area\:of \:the\:cuboid \:is \:{\pink {\sf{808{cm}^{2} }}\bigstar}

Similar questions