Math, asked by narendra9584, 1 year ago

The latus rectum of the conic 3x2 + 4y2 - 6x + 8y - 5 = 0 is

Answers

Answered by wwwrahulislam34
0

Answer:

6+8y-6x+8y-5=16y-1-6x=0

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Latus\:rectum(LL')=\frac{3}{2}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies Eqn \: of \: conic =3{x}^{2}+ {4y}^{2} -6x+8y-5=0} \\  \\ \red {\underline \bold{To \: Find: }} \\  \tt {: \implies Length \: of \: latus \: rectum (LL')=?}

• According to given question :

 \tt{: \implies 3 {x}^{2}  + 4 {y}^{2}  - 6x + 8y - 5 = 0} \\  \\  \tt{:  \implies 3 {x}^{2}  - 6x +3 - 3  + 4 {y}^{2}  + 8y + 4 - 4 - 5 = 0} \\  \\   \tt{: \implies  (\sqrt{3}  x -  \sqrt{3})^{2}  +  {(2y + 2)}^{2}  = 12} \\  \\  \tt{: \implies   \frac{(x  - 1)^{2}}{ \frac{12}{3}}  +  \frac{ {(y + 1)}^{2} }{ \frac{12}{4} }  = 1} \\  \\  \tt{:  \implies  \frac{(x - 1)^{2} }{4}  +  \frac{ {(y  + 1)}^{2} }{3}  = 1}

 \text{So, \: it \: is \: in \: the \: form \: of}  \\  \tt{\to  \frac{ {x}^{2} }{ {a}^{2} }   - \frac{ {y}^{2} }{ {b}^{2} } = 1}  \\  \\  \bold{Where : } \\   \tt{\circ  \:  {a}^{2}  =  4} \\   \\   \tt{\circ \:  {b}^{2}  = 3} \\  \\  \bold{As \: we \: know \: that}  \\    \tt{ :  \implies Latus \: rectum =  \frac{2 {b}^{2}  }{a} } \\   \\  \text{Putting \: given \: values} \\ \tt{ :  \implies Latus \: rectum =  \frac{2 \times 3}{4} } \\  \\  \green{\tt{ :  \implies Latus \: rectum =  \frac{3 }{2} }}

Similar questions