Math, asked by venigallamanoj99, 1 month ago

The latus rectum of the hyperbola 9x2 – 16y2 + 72x – 32y – 16 = 0 is :​

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\textsf{Equation of hyperbola is}

\mathsf{9x^2-16y^2+72x-32y-16-0}

\underline{\textbf{To find:}}

\textsf{Latus rectum of the hyperbola}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{9x^2-16y^2+72x-32y-16-0}

\textsf{This can be written as}

\mathsf{9(x^2+8x)-16(y^2+2y)=16}

\mathsf{9(x^2+8x+16-16)-16(y^2+2y+1-1)=16}

\mathsf{9((x+4)^2-16)-16((y+1)^2-1)=16}

\mathsf{9(x+4)^2-144-16(y+1)^2+16=16}

\mathsf{9(x+4)^2-16(y+1)^2=144}

\textsf{Divide bothsides of the equation by 144}

\mathsf{\dfrac{(x+4)^2}{16}-\dfrac{(y+1)^2}{9}=144}

\mathsf{Comparing\;this\;equation\;with\;\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1}

\mathsf{Here,\;a^2=16\;\&\;b^2=9}

\underline{\mathsf{Length\;of\;latus\;rectum}}

\mathsf{=\dfrac{2b^2}{a}}

\mathsf{=\dfrac{2{\times}9}{4}}

\mathsf{=\dfrac{9}{2}}

\underline{\textbf{Find more:}}

Which lines are the directrices of the ellipse?x = −4.25 and x = 8.25

x = −3.25 and x = 9.25

y = −4.25 and y = 8.25

y = −3.25 and y = 9.25

https://brainly.in/question/39034771  

If vertices are (2,-2), (2, 4) and e =1/3

then equation of the ellipse is

​https://brainly.in/question/19651956

Similar questions