Math, asked by Navtejvir, 1 year ago


The LCM and HCF of two numbers are 240 and 12 respectively. If one of the numbers is 60, then find the other number.

Answers

Answered by webstar0
4
LCM * HCF = one number *other number
= 240 * 12 = 60 * other number
= other number = 240*12 / 60
= other number = 4* 12
= other number = 48

Navtejvir: thanks
webstar0: welcome
Answered by Anonymous
12

\bf{\underline{\underline \blue{Solution:-}}}

\sf\underline{\red{\:\:\: AnswEr:-\:\:\:}}

  • Th other required number = 48

\sf\underline{\red{\:\:\: Given:-\:\:\:}}

  • The LCM and HCF of two numbers are 240 and 12 respectively.
  • One of the numbers is 60.

\sf\underline{\red{\:\:\: Need\:To\: Find:-\:\:\:}}

  • The other required number = ?

\bf{\underline{\underline \blue{Explanation:-}}}

Let other required number = y

\sf\underline{\red{\:\:\: Formula\:Used\: Here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: L.C.M \times H.C.F = Product \:of\: numbers } \\\\

\sf\underline{\green{\:\:\: Now,Putting\:the\: values:-\:\:\:}}

\dashrightarrow \sf {240 \times 12 = 60 \times y} \\\\

\dashrightarrow \sf {2880 = 60y} \\\\

\dashrightarrow \sf {y = \dfrac{\cancel{2280}}{\cancel{60}} } \\\\

\dashrightarrow \sf {y = \dfrac{\cancel{228}}{\cancel{6}} } \\\\

\dashrightarrow \sf {y = 48} \\\\

\sf\underline{\green{\:\:\: ThereFore:-\:\:\:}}

  • Th other required number is 48.

\rule{200}{2}

Similar questions