Math, asked by rv57171, 11 months ago

The LCM of two coprime numbers is 1,302. If one
of the numbers is 42, what is the other number? in detail​

Answers

Answered by ShírIey
89

AnswEr:

\large\bold{\underline{\sf{\blue{\:\:Given\:\:}}}}

• LCM of Numbers is 1,302 & one number is 42.

Let us Consider that the other Number be x.

We know that,

Both Numbers are Co primes.

Co Primes have only 1 as their Factor.

So, HCF would be 1.

\longrightarrow\sf\: HCF \: = \: 1

\longrightarrow{\underline{\boxed{\sf{\red{LCM \: \times\; HCF\: =\: Product\: of \: two \; Numbers}}}}}

\diamond\small\bold{\underline{\sf{\blue{Finding\: other\: Number}}}}

\longrightarrow\sf\: 1 \times \: 1302 \: = \: 42 \times\: x

\longrightarrow\sf\: 1302 = 42x

\longrightarrow\sf\:x = \dfrac{1302}{42}

\longrightarrow\large{\underline{\boxed{\sf{\red{x \: =\: 31}}}}}

\small{\underline{\sf{\blue{Hence,\:The\; Other\; Number\; is\; 31.}}}}

\rule{200}2


řåhûł: zeherrrr xD
Answered by TheBrainlyWizard
73

\bf{\underline{\underline{Given\: :}}}

\mathsf{\bigstar\: LCM\:of\:two\:coprime\:no's = 1,302}

\mathsf{\bigstar\: One\:number = 42}\\ \\

\bf{\underline{\underline{To\:find\: :}}}

\mathsf{\bigstar\: Other\:number}\\ \\

\bf{\underline{\underline{Solution\: :}}}

\mathsf{Let\:one\:number = a = 42}

\mathsf{and\:other\:number = b}\\

\mathsf{We\:know\:that}

\mathsf{HCF \:of\:coprime\:no's = 1}\\ \\

\mathtt{HCF(a,b) × LCM(a,b) = Product \:of\: a\: and\: b}

\mathtt{\rightarrow\: 1 × 1302 = a × b}

\mathtt{\rightarrow\: 1 × 1302 = 42 × b}\\

\mathtt{\rightarrow\: b = \Large{\frac{1302}{42}}}

\fbox{\Large{\mathtt{\green{\rightarrow\: b = 31}}}}\\

\text{Therefore, the other number = 31}

Similar questions