The LCM of two numbers is 7 times their HCF. The sum of LCM and HCF is 240. find
the two numbers.
Answers
Answered by
0
Answer:
Step-by-step explanation:
Let the two numbers be a and b
L.C.M of a and b is 7 times H.C.F of a and b
⇒ L.C.M = 7 x H.C.F → equation 1
The sum of L.C.M and H.C.F =240
⇒ L.C.M + H.C.F = 240 → equation 2
Substituting equation 1 in equation 2
equation 2 ⇒ 7 H.C.F + H.C.F = 240
⇒ 8 H.C.F = 240
⇒ H.C.F = 240 / 8
⇒ H.C.F = 30
Substituting H.C.F = 30 in equation 1
equation 1 ⇒ L.C.M = 7 x H.C.F
⇒ L.C.M = 7 x 30
⇒ L.C.M = 210
We know that product of 2 numbers = Their H.C.F x L.C.M
⇒ a x b = 30 x 210
⇒ ax b = 6300
Answered by
0
Answer:
a = 210 and b = 30
Step-by-step explanation:
l.c.m(a,b) = 7(h.c.f(a,b))
l.c.m(a,b) = 7(h.c.f(a,b))let. h.c.f(a,b). be x
l.c.m(a,b) = 7(h.c.f(a,b))let. h.c.f(a,b). be xl.c.m(a,b). = 7x
l.c.m(a,b) = 7(h.c.f(a,b))let. h.c.f(a,b). be xl.c.m(a,b). = 7x:: l.c.m(a,b) + h.c.f(a,b) = 240
l.c.m(a,b) = 7(h.c.f(a,b))let. h.c.f(a,b). be xl.c.m(a,b). = 7x:: l.c.m(a,b) + h.c.f(a,b) = 2407x+x = 240
l.c.m(a,b) = 7(h.c.f(a,b))let. h.c.f(a,b). be xl.c.m(a,b). = 7x:: l.c.m(a,b) + h.c.f(a,b) = 2407x+x = 240x = 30
l.c.m(a,b) = 7(h.c.f(a,b))let. h.c.f(a,b). be xl.c.m(a,b). = 7x:: l.c.m(a,b) + h.c.f(a,b) = 2407x+x = 240x = 30::h.c.f(a,b)=30
l.c.m(a,b) = 7(h.c.f(a,b))let. h.c.f(a,b). be xl.c.m(a,b). = 7x:: l.c.m(a,b) + h.c.f(a,b) = 2407x+x = 240x = 30::h.c.f(a,b)=30l.c.m(a,b) =7x30
l.c.m(a,b) = 7(h.c.f(a,b))let. h.c.f(a,b). be xl.c.m(a,b). = 7x:: l.c.m(a,b) + h.c.f(a,b) = 2407x+x = 240x = 30::h.c.f(a,b)=30l.c.m(a,b) =7x30 =210
l.c.m(a,b) = 7(h.c.f(a,b))let. h.c.f(a,b). be xl.c.m(a,b). = 7x:: l.c.m(a,b) + h.c.f(a,b) = 2407x+x = 240x = 30::h.c.f(a,b)=30l.c.m(a,b) =7x30 =210
l.c.m(a,b) = 7(h.c.f(a,b))let. h.c.f(a,b). be xl.c.m(a,b). = 7x:: l.c.m(a,b) + h.c.f(a,b) = 2407x+x = 240x = 30::h.c.f(a,b)=30l.c.m(a,b) =7x30 =210 l.c.m(a,b) x h.c.f(a,b) = a x b
l.c.m(a,b) = 7(h.c.f(a,b))let. h.c.f(a,b). be xl.c.m(a,b). = 7x:: l.c.m(a,b) + h.c.f(a,b) = 2407x+x = 240x = 30::h.c.f(a,b)=30l.c.m(a,b) =7x30 =210 l.c.m(a,b) x h.c.f(a,b) = a x b210 x 30 = a x b
l.c.m(a,b) = 7(h.c.f(a,b))let. h.c.f(a,b). be xl.c.m(a,b). = 7x:: l.c.m(a,b) + h.c.f(a,b) = 2407x+x = 240x = 30::h.c.f(a,b)=30l.c.m(a,b) =7x30 =210 l.c.m(a,b) x h.c.f(a,b) = a x b210 x 30 = a x b:::; on comparing we get,
l.c.m(a,b) = 7(h.c.f(a,b))let. h.c.f(a,b). be xl.c.m(a,b). = 7x:: l.c.m(a,b) + h.c.f(a,b) = 2407x+x = 240x = 30::h.c.f(a,b)=30l.c.m(a,b) =7x30 =210 l.c.m(a,b) x h.c.f(a,b) = a x b210 x 30 = a x b:::; on comparing we get, a = 210 and b = 30
Similar questions