Math, asked by prathamesh98, 11 months ago

the least positive integer n such that (2i/1+ i )^n is positive integer is (1) I6 (2)8 (3) 4 (4) 2​

Attachments:

Answers

Answered by knjroopa
5

Step-by-step explanation:

Given  

the least positive integer n such that (2i/1+ i )^n is positive integer is

  • So (2i / 1 + i)^n is positive.
  • Rationalizing the denominator we get
  • (2i / 1 + i x 1 – i / 1 – i)^n
  • (2i (1 – i) / (1 – i^2)^n
  •  (2i (1 – i) / 1 – (- 1))^n
  •  (2i (1 – i) / 2)^n
  •  (1 – i^2)^n
  •    (i – i^2) ^n
  •    (i + 1)^n
  • Now if n = 2
  •  (i – i^2)^2 = 1 + i^2 + 2i
  •                    = 2i
  • So n = 2 is not satisfied.
  • Now if n = 3 we get
  •    (i – i^2)^3 = (1 + i)^2(1 + i)
  •                       = 2i (1 + i)
  •                       = 2i – 2
  • So n= 3 is not satisfied.
  • Now if n = 4 is not satisfied as it gives negative value.
  • Now if n = 8 we get
  • So (i – i^2)^8
  •   ((i – i^2)^4)^2
  •  (- 4)^2
  •     = 16  
  • Therefore n = 8 is satisfied.
Answered by manjitkaur1621
1

Answer:

n=8 is the right answer ........ . ....

Similar questions