Math, asked by haidersalmanak, 1 month ago

the least value of 8 cosec²x + 25 sin²x ​

Answers

Answered by om16sharma
0

Answer:

1 is the answer of this questions

Answered by mathdude500
1

\large\underline{\sf{To\:Find - }}

The least value of 8 cosec²x + 25 sin²x

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: {8cosec}^{2}x +  {25sin}^{2}x

We know,

\boxed{ \bf{ \: cosecx \:  =  \:  \frac{1}{sinx}}}

So, above expression can be rewritten as

\rm \:  =  \:  \: \dfrac{8}{ {sin}^{2} x}  + 25 {sin}^{2}x

We know,

If x and y are two positive real numbers, then

Arithmetic Mean between them is greater than or equals to Geometric Mean. i.e.

\boxed{ \bf{ \: \dfrac{x + y}{2} \geqslant  \sqrt{xy}}}

or

\boxed{ \bf{ \: x + y \geqslant 2 \sqrt{xy}}}

So, using this identity, we get

 \rm \:  \:  \geqslant  \:  2 \: \sqrt{\dfrac{8}{ {sin}^{2} x} \times  {25sin}^{2}x}

 \rm \:  \:  \geqslant  \:  2 \: \sqrt{8 \times 25}

 \rm \:  \:  \geqslant  \:  2 \: \sqrt{200}

 \rm \:  \:  \geqslant  \:  2 \: \sqrt{2 \times 10 \times 10}

 \rm \:  \:  \geqslant  \:  20 \: \sqrt{2}

Hence,

\boxed{ \bf{ \: \: Least \: value \: of \: {8cosec}^{2}x +  {25sin}^{2}x = 20 \sqrt{2}}}

Additional Information :

If x and y are two positive real numbers then

\boxed{ \bf{ \: AM =  \frac{x + y}{2}}}

\boxed{ \bf{ \: GM =  \sqrt{xy}}}

\boxed{ \bf{ \: HM =  \frac{2xy}{x + y}}}

and

\boxed{ \bf{  \: \: AM \:  \geqslant  \: GM  \: \geqslant  \: HM \: }}

Similar questions