Math, asked by santa19, 17 days ago

the lenght of a rectangle exceeds the width by 14 cm perimetre of rectangle is 160 cm find lenght and width of the rectangle. ​

Answers

Answered by itzmedipayan2
6

Answer:

Hello Santa19!

Your answer is 47 cm

Step-by-step explanation:

Given that

perimeter of rectangle =160cm

Width of rectangle =x

Length =x+14

Then perimeter of rectangle

 = 2(l + w) \\  \\ 2(x + x + 14) = 160 \\  \\ 2x (2x+ 14) = 160 \\  \\  \frac{ { \cancel{160}} \:  \: ^{80} }{ \cancel2}  \\  \\  = 80 \\

2x + 14 = 80 \\  \\ 2x = 80 - 14 \\  \\ 2x = 66 \\  \\  \therefore \: x =  \frac{ { \cancel{66}} \:  \: ^{33} }{ \cancel2}  \\  \\  = 33 \: cm

Widtg=33cm

Length = 33+14=47cm

Hope it helps you from my side

Answered by Anonymous
63

Given : Length of the Rectangle exceeds the Breadth by 14 cm . Perimeter ov the rectangle is 160 cm .

 \\ \\

To Find : Find the Length and Breadth of Rectangle

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN : For Calculating this let's form the Equation first and than we can solve it easily .Let's Solve :

 \\ \\

 \maltese Formula Used :

  •  {\underline{\boxed{\sf{ Perimeter = 2 \bigg( Length + Breadth \bigg) }}}}

 \\ \\

 \maltese According to the Question :

 \longmapsto Let the Breadth be y .So,

 \qquad \; {\pmb{\sf{ Breadth = y \; cm }}}

 \\

 \longmapsto Breadth exceeds the length by 14 cm .So,

 \qquad \; {\pmb{\sf{ Length = y + 14 \; cm }}}

 \\ \\

 \maltese Calculating the Value of y :

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { Perimeter = 2 \bigg( Length + Breadth \bigg) } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { 160 = 2 \bigg\{ \bigg( y + 14 \bigg) + y \bigg\} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { 160 = 2 \bigg( 2y + 14 \bigg) } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { 160 = 4y + 28 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { 160 - 28 = 4y } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { 132 = 4y } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { \dfrac{132}{4} = y } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { \cancel\dfrac{132}{4} = y } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; {\underline{\boxed{\pmb{\frak{ y = 33 }}}}} \; {\pink{\bigstar}} \\ \\ \\ \end{gathered}

 \\ \\

 \maltese Calculating the Dimensions :

  • Breadth = y = 33 cm
  • Length = y + 14 = 33 + 14 = 47 cm

 \\ \\

 \therefore \; Length of the Rectangle is 47 cm and Breadth is 33 cm .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions