Math, asked by PanduDeepak8736, 19 days ago

The lenght of a rectangle is 20 cm more than its breadth. if the perimeter is 84 cm, find the length of the rectangle

Answers

Answered by StarFighter
5

Answer:

Given :-

  • The length of a rectangle is 20 cm more than its breadth.
  • The perimeter of a rectangle is 84 cm.

To Find :-

  • What is the length of the rectangle.

Formula Used :-

\clubsuit Perimeter Of Rectangle Formula :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Perimeter_{(Rectangle)} =\: 2(Length + Breadth)}}}\: \: \: \bigstar\\

Solution :-

Let,

\mapsto \bf Breadth_{(Rectangle)} =\: x\: cm\\

Given that :

\bigstar The length of a rectangle is 20 cm more than its breadth.

So,

\mapsto \bf Length_{(Rectangle)} =\: (x + 20)\: cm\\

Given :

  • Perimeter of a rectangle = 84 cm

According to the question by using the formula we get,

\footnotesize \implies \bf Perimeter_{(Rectangle)} =\: 2(Length + Breadth)\\

\implies \sf 84 =\: 2\{(x + 20) + x\}

\implies \sf 84 =\: 2(x + x + 20)

\implies \sf 84 =\: 2(2x + 20)

\implies \sf 84 =\: 4x + 40

\implies \sf 84 - 40 =\: 4x

\implies \sf 44 =\: 4x

\implies \sf \dfrac{\cancel{44}}{\cancel{4}} =\: x

\implies \sf \dfrac{11}{1} =\: x

\implies \sf 11 =\: x

\implies \sf\bold{\purple{x =\: 11}}\\

Hence, the required length and breadth of the rectangle is :

\dag Breadth Of Rectangle :

\dashrightarrow \sf Breadth_{(Rectangle)} =\: x\: cm\\

\dashrightarrow \sf\bold{\red{Breadth_{(Rectangle)} =\: 11\: cm}}\\

\dag Length Of Rectangle :

\dashrightarrow \sf Length_{(Rectangle)} =\: (x + 20)\: cm\\

\dashrightarrow \sf Length_{(Rectangle)} =\: (11 + 20)\: cm\\

\dashrightarrow \sf\bold{\red{Length_{(Rectangle)} =\: 31\: cm}}\\

\therefore The length of the rectangle is 31 cm .

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

VERIFICATION :-

\leadsto \mathrm{\bold{Perimeter_{(Rectangle)} =\: 2(Length + Breadth)}}\\

We get,

  • Length = 31 cm
  • Breadth = 11 cm
  • Perimeter = 84 cm

So, by putting those values we get,

\leadsto \mathrm{84 =\: 2(31 + 11)}

\leadsto \mathrm{84 =\: (2 \times 31) + (2 \times 11)}\\

\leadsto \mathrm{84 =\: 62 + 22}\\

\leadsto \mathrm{\bold{\purple{84 =\: 84}}}\\

\longrightarrow \: \: \: \: \mathrm{\bold{\underline{\red{L.H.S =\: R.H.S}}}}\\

HENCE VERIFIED !!

Similar questions