Math, asked by nikki6730, 5 months ago

the lenght of a tangent from a point A at a distance 70 cm from the centre of a circle is 56 cm .find the circumference of the circle. ​

Answers

Answered by TheFairyTale
146

 \boxed{ \red{AnswEr:-}}

  • 264 cm

GivEn :-

  • The length of a tangent from point A at a distance of 70 cm from the centre of a circle is 56 cm

To Find :-

  • The circumference of the circle

 \boxed{ \red{Solution :-}}

➠ The length of the tangent, AB = 56 cm

➠ The distance from centre of circle to the tangent, OA = 70 cm

➠ Let the radius of the circle be, OB = r cm

➠ ∆AOB is a right angle traingle ; ∠ABO = 90°

➠ According to Pythagorus Theorem,

 \implies  \boxed{\sf \: Hypotenuse^{2}  =  {Base}^{2}  +  {Height}^{2} }

 \implies \sf \: OA^{2}  =  OB^{2}  +  AB^{2}

 \implies \sf \:  {70}^{2}  =  {r}^{2}  +  {56}^{2}

 \implies \sf \:  {r}^{2}  =  {70}^{2}  -  {56}^{2}

 \implies \sf \:  {r}^{2}  =  4900 - 3136

 \implies \sf \:  {r}^{2}  = 1764

 \implies \sf \boxed{ \red{ \bold{r = 42}}}

➦ Now, the circumference of circle,

 \implies \boxed{ \sf \: C = 2\pi r}

 \implies \sf \: C = 2 \times  \dfrac{22}{7}  \times 42

\implies \sf \: C = 2 \times  22  \times 6

 \implies \sf \boxed{ \red{ \bold{ C =  264 \: cm}}}

Answered by DARLO20
112

● See the attachment diagram.

\Large\bf\pink{GiVeN,} \\

  • \bf{\red{Length\:of\:tangent}}\:(AP)\:=\:56\:cm\:

  • \bf{\red{Length\:of\:pt.\:A\:from\:the\:centre\:\atop {of\:the\:circle}}\:(OA)\:=\:70\:cm}\:

\Large\bf\purple{FoRmUlA,} \\

▪To calculate radius of the circle,

\green\bigstar\:\:\bf\blue{Radius\:(OP)\:=\:\sqrt{(OA)^2\:-\:(AP)^2}\:} \\

\Large\bf\orange{CaLcUlAtIoN,} \\

:\implies\:\:\bf{Radius\:(OP)\:=\:\sqrt{(70)^2\:-\:(56)^2}\:} \\

:\implies\:\:\bf{Radius\:(OP)\:=\:\sqrt{4900\:-\:3136}\:} \\

:\implies\:\:\bf{Radius\:(OP)\:=\:\sqrt{1764}\:} \\

:\implies\:\:\bf\green{Radius\:(OP)\:=\:42\:cm\:} \\

▪To calculate circumference of the circle,

\red\bigstar\:\:\bf\orange{Circumference \:=\:2\pi {r}\:} \\

\longmapsto\:\:\bf{Circumference \:=\:2\times {\dfrac{22}{7}}\times {42}\:} \\

\longmapsto\:\:\bf{Circumference \:=\:2\times{22}\times {6}\:} \\

\longmapsto\:\:{\boxed {\green{\bf {Circumference \:=\:264\:cm^2\:}}}} \\

Attachments:
Similar questions