Math, asked by sumedhc64, 4 months ago

The length a tangent from a point A at a distance 5 cm from the centre of a circle is 4

cm, find the radius of the circle. ​

Answers

Answered by Anonymous
35

{ \huge{ \red{ \underline{  \bf{Given : }}}}}

  • AB is the tangent from point A

  • Length of tangent = AB = 4 cm

  • Also, Distance of point from circle = 5 cm. Hence, OA = 5 cm.

{ \huge{ \green{ \underline{ \bf{To \:  Find :}}}}}

  • Radius of the circle ?

{ \huge{ \underline { \bf{ \blue{Using  \: Pythagoras \:  Theorem :}}}}}

  • (Hypotenuse)² = ( Height)² + (Base)².

{ \huge{ \underline{ \red{ \bf{Solution :}}}}}

↬{ \mathsf{Let  \: the  \: circle  \: be  \: with \:  center \:  O}}

↬{ \mathsf{Since \:  AB \: is \: tangent}}

↬{ \mathsf{Hence \:  OB \: ⊥  \:  AB}}

↬∴ { \mathsf{\angle  OBA = 90 \degree}}

↬{ \mathsf{So,  \: \triangle OAB \: is \: a \: right \: triangle}}

{ \huge{ \purple{ \underline{ \bf{Then :}}}}}

</p><p></p><p>✠ { \mathsf{(Hypotenuse)² \:  =  \:  ( Height)²  \:  +  \: (Base)²}}</p><p>

⇒{ \mathsf{OA {}^{2} =   OB {}^{2} +   AB {}^{2} }}

⇒{ \mathsf{5 {}^{2}  =  OB {}^{2}  + 4 {}^{2}}}

⇒{ \mathsf{OB {}^{2}  = 25 - 16}}

⇒{ \mathsf{ OB {}^{2}   = 9}}

⇒{ \mathsf{OB =  \sqrt{9} }}

⇒{ \mathsf{OB =  \sqrt{3 {}^{2} }}}

⇒{ \mathsf{OB = 3}}

{ \huge { \pink { \underline{ \bf{Therefore,}}}}}

{ \mathsf{ \:   Radius \:  of \:  the \:  circle = { \boxed{ \bf{ \orange{OB = 3 cm}}}}}} \star

Attachments:

Anonymous: Awesome!
Answered by cool1403
4

\large\mathfrak\colorbox{plum}{Answer}

Given,

  • AB is the tangent from point A
  • Length of tangent = AB = 4 cm
  • Also, Distance of point from circle = 5 cm. Hence, OA = 5 cm.

To find,

Radius of Circle

Solution,

Let the circle be with center O

Since,AB is a tangent

Hence, OB ⊥ AB

∴∠OBA=90°

So,△OAB is a right angled triangle.

Applying Pythagores Theorem,

\normalsize\orange{\boxed{\sf{(Hypoteneus)²=(Height)²+(Base)²}}}

\normalsize\sf{OA²=OB²+AB²}

\normalsize\sf{5²=OB²+4²}

\normalsize\sf{25=OB²+16}

\normalsize\sf{OB²=25-16}

\normalsize\sf{OB²=9}

\normalsize\sf OB =  \sqrt{9}

\large\pink{\boxed{\sf{Radius\: of\: circle=3}}}

Similar questions