Math, asked by heenatab6436, 11 months ago

The length and breadth of a floor of a room are 12 m 15 m respectively find the number of square tiles of 60 cm required tu pave the floor of the room

Answers

Answered by EliteSoul
64

Answer:

\bold\red{Number\:of\:tiles=500}

________________________

\textbf{\underline{Given\::}}

  • Length of the floor = 12 m
  • Breadth = 15 m
  • Side of square tiles = 60 cm
  • Number of tiles =?

\textbf{\underline{\underline{Solution\::}}}

Area of the floor=Length × Breadth

\longrightarrow\tt Area = (15\times 12) \:{m}^{2}

\longrightarrow\tt Area = 180\:{m}^{2}

__________________________

\longrightarrow\tt Side\:of\:tiles=60\:cm

\longrightarrow\tt Side\:of\:tiles=\frac{60}{100}\:m

\longrightarrow\tt Area\:of\:tiles=(0.6\times 0.6)\:{m}^{2}

\longrightarrow\tt Area\:of\:tiles=0.36\:{m}^{2}

________________________

• Number of tiles:-

\rightarrow\tt Number\:of\:tiles=\frac{Area\:of\:floor}{Area\:of\:tiles}

\rightarrow\tt Number\:of\:tiles=\frac{180}{0.36}

\rightarrow\tt Number\:of\:tiles=500

\rule{200}{2}

#Answerwithquality

#BAL

Answered by Anonymous
106

AnswEr :

  • Length of Floor = 12 m = 1200 cm
  • Breadth of Floor = 15 m = 1500 cm
  • Side of Square Tiles = 60 cm
  • Find Number of tiles required to pave the floor of room.

Refrence of Image is in the Diagram :

RECTANGLUAR FLOOR :

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\thicklines\put(7.7,3){\large{A}}\put(6.9,2){\mathsf{\large{1200 cm}}}\put(7.7,1){\large{B}}\put(9.2,0.7){\matsf{\large{1500 cm}}}\put(11.1,1){\large{C}}\put(8,1){\line(1,0){3}}\put(8,1){\line(0,2){2}}\put(11,1){\line(0,3){2}}\put(8,3){\line(3,0){3}}\put(11.1,3){\large{D}}\end{picture}

SQUARE TILE :

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\thicklines\put(7.7,3){\large{A}}\put(7.2,2){\mathsf{\large{60 cm}}}\put(7.7,1){\large{B}}\put(9,0.7){\matsf{\large{60 cm}}}\put(10.6,1){\large{C}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){2}}\put(10.5,1){\line(0,3){2}}\put(8,3){\line(3,0){2.5}}\put(10.6,3){\large{D}}\end{picture}

\rule{100}{2}

Let's Head to the Question Now :

\longrightarrow \tt Area \:of \:Floor = Number \times Area \: of \:Tile \\ \\\longrightarrow \tt (Length \times Breadth) = Number \times (Side)^{2} \\ \\\longrightarrow \tt1200cm \times 1500cm = Number \times  {(60cm)}^{2}\\ \\\longrightarrow \tt1800000 \:{cm}^{2} = Number \times 3600 \: {cm}^{2}\\ \\\longrightarrow \tt \cancel\dfrac{1800000 \:{cm}^{2}}{3600 \: {cm}^{2}} = Number \\ \\\longrightarrow \large \boxed{ \red{\tt Number = 500}}

Number of tiles required to pave is 500.

\rule{300}{2}

\star\: \underline\frak{Some \:Information \:about \: Square :}

⋆ All sides are equal and parallel.

⋆ All angles are equal to 90 degrees.

⋆ The diagonals are equal and bisect each other.

⋆ Any two adjacent angles add up to 180 degrees.

⋆ Area of Square = ( Side )²

⋆ Perimeter of Square = 4 × Side

\rule{300}{1}

\star\: \underline\frak{Some \:Information \:about \: Rectangle :}

⋆ Opposite sides are equal and parallel.

⋆ All angles are equal to 90 degrees.

⋆ The diagonals are equal and bisect each other.

⋆ The intersection of the diagonals is the circumcentre. That is you can draw a circle with that as centre to pass through the four corners.

⋆ Any two adjacent angles add up to 180 degrees.

⋆ Lines joining the mid points of the sides of a rectangle in an order form a rhombus of half the area of the rectangle.

⋆ The sum of the four exterior angles is 4 right angles.

⋆ Area of Rectangle = Length × Breadth

⋆ Perimeter of Rectangle = 2 × (Length + Breadth)

#answerwithquality #BAL

Similar questions