The length and breadth of a rectangle are
(5x² + 8x - 5) units and (2x2 +3x - 3) units,
respectively. Find the perimeter of the rectangle
Answers
GIVEN :-
- Length of Rectangle = (5x² + 8x - 5).
- Breadth of Rectangle = (2x² + 3x - 3).
TO FIND :-
- The perimeter of Rectangle.
SOLUTION :-
Answer:
Hope it helps
Step-by-step explanation:
GIVEN :-
Length of Rectangle = (5x² + 8x - 5).
Breadth of Rectangle = (2x² + 3x - 3).
TO FIND :-
The perimeter of Rectangle.
SOLUTION :-
\begin{gathered} \\ : \implies \displaystyle \sf \: perimeter = 2(length + breadth) \\ \\ \\ \end{gathered}
:⟹perimeter=2(length+breadth)
\begin{gathered} : \implies \displaystyle \sf \: perimeter =2(length) + 2(breadth) \\ \\ \\ \end{gathered}
:⟹perimeter=2(length)+2(breadth)
\begin{gathered} : \implies \displaystyle \sf \: perimeter =2(5x ^{2} + 8x - 5) + 2(2x ^{2} + 3x - 3) \\ \\ \\ \end{gathered}
:⟹perimeter=2(5x
2
+8x−5)+2(2x
2
+3x−3)
\begin{gathered} : \implies \displaystyle \sf \: perimeter =(10x ^{2} + 16x - 10) + (4x ^{2} + 6x - 6) \\ \\ \\ \end{gathered}
:⟹perimeter=(10x
2
+16x−10)+(4x
2
+6x−6)
\begin{gathered} : \implies \displaystyle \sf \: perimeter =10x ^{2} + 16x - 10 + 4x ^{2} + 6x - 6\\ \\ \\ \end{gathered}
:⟹perimeter=10x
2
+16x−10+4x
2
+6x−6
\begin{gathered}: \implies \displaystyle \sf \: perimeter =10x ^{2} + 4x ^{2} + 16x + 6x - 10 - 6 \\ \\ \\ \end{gathered}
:⟹perimeter=10x
2
+4x
2
+16x+6x−10−6
\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \: perimeter =14x ^{2} + 22x - 16 \: units}} \\ \end{gathered}
:⟹
perimeter=14x
2
+22x−16units