Math, asked by kaurnavneet37746, 6 months ago

The length and breadth of a rectangle are
(5x² + 8x - 5) units and (2x2 +3x - 3) units,
respectively. Find the perimeter of the rectangle​

Answers

Answered by prince5132
78

GIVEN :-

  • Length of Rectangle = (5x² + 8x - 5).
  • Breadth of Rectangle = (2x² + 3x - 3).

TO FIND :-

  • The perimeter of Rectangle.

SOLUTION :-

 \\  :  \implies \displaystyle \sf \: perimeter = 2(length  + breadth) \\  \\  \\

 :  \implies \displaystyle \sf \: perimeter =2(length) + 2(breadth) \\  \\  \\

 :  \implies \displaystyle \sf \: perimeter =2(5x ^{2}  + 8x - 5) + 2(2x ^{2}  + 3x - 3) \\  \\  \\

 :  \implies \displaystyle \sf \: perimeter =(10x ^{2}  + 16x - 10) + (4x ^{2}  + 6x - 6) \\  \\  \\

 :  \implies \displaystyle \sf \: perimeter =10x ^{2}  + 16x - 10 + 4x ^{2}  + 6x - 6\\  \\  \\

:  \implies \displaystyle \sf \: perimeter =10x ^{2}  + 4x ^{2}  + 16x + 6x - 10 - 6 \\  \\  \\

:  \implies  \underline{ \boxed{\displaystyle \sf \: perimeter =14x ^{2}  + 22x - 16 \: units}} \\


Anonymous: Great buddy :)
prince5132: thanks :)
Answered by Rohitranawatyadav
0

Answer:

Hope it helps

Step-by-step explanation:

GIVEN :-

Length of Rectangle = (5x² + 8x - 5).

Breadth of Rectangle = (2x² + 3x - 3).

TO FIND :-

The perimeter of Rectangle.

SOLUTION :-

\begin{gathered} \\ : \implies \displaystyle \sf \: perimeter = 2(length + breadth) \\ \\ \\ \end{gathered}

:⟹perimeter=2(length+breadth)

\begin{gathered} : \implies \displaystyle \sf \: perimeter =2(length) + 2(breadth) \\ \\ \\ \end{gathered}

:⟹perimeter=2(length)+2(breadth)

\begin{gathered} : \implies \displaystyle \sf \: perimeter =2(5x ^{2} + 8x - 5) + 2(2x ^{2} + 3x - 3) \\ \\ \\ \end{gathered}

:⟹perimeter=2(5x

2

+8x−5)+2(2x

2

+3x−3)

\begin{gathered} : \implies \displaystyle \sf \: perimeter =(10x ^{2} + 16x - 10) + (4x ^{2} + 6x - 6) \\ \\ \\ \end{gathered}

:⟹perimeter=(10x

2

+16x−10)+(4x

2

+6x−6)

\begin{gathered} : \implies \displaystyle \sf \: perimeter =10x ^{2} + 16x - 10 + 4x ^{2} + 6x - 6\\ \\ \\ \end{gathered}

:⟹perimeter=10x

2

+16x−10+4x

2

+6x−6

\begin{gathered}: \implies \displaystyle \sf \: perimeter =10x ^{2} + 4x ^{2} + 16x + 6x - 10 - 6 \\ \\ \\ \end{gathered}

:⟹perimeter=10x

2

+4x

2

+16x+6x−10−6

\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \: perimeter =14x ^{2} + 22x - 16 \: units}} \\ \end{gathered}

:⟹

perimeter=14x

2

+22x−16units

Similar questions