Math, asked by mariamathews500, 9 hours ago

The length and breadth of a rectangle are (a + 3b) units and (5a - b) units
respectively. The perimeter of this rectangle is equal to the perimeter of a square.
Find the area of a Square?

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

  • Length of a rectangle = a + 3b units

  • Breadth of a rectangle = 5a - b units

We know,

 \red{\boxed{\sf{ Perimeter_{(rectangle)} = 2(Length + Breadth)}}}

So, on substituting the values, we get

\rm :\longmapsto\:Perimeter_{(rectangle)} = 2(a + 3b + 5a - b)

\rm :\longmapsto\:Perimeter_{(rectangle)} = 2(6a + 2b)

\rm :\longmapsto\:Perimeter_{(rectangle)} = 4(3a + b) \: units

According to statement

\rm :\longmapsto\:Perimeter_{(square)} = Perimeter_{(rectangle)}

\rm :\longmapsto\:Perimeter_{(square)} = 4(3a + b)

Let assume that the side of the square be x units

We know,

 \red{\rm :\longmapsto\:\boxed{\tt{ Perimeter_{(square)} \:  =  \: 4 \times side \: }}}

So,

\rm :\longmapsto\:4 \times x = 4(3a + b)

\rm\implies \: x = 3a + b \: units

We know,

 \red{\rm :\longmapsto\:\boxed{\tt{ Area_{(square)} =  {(side)}^{2} }}}

So,

\rm\implies \:Area_{(square)} =  {(3a + b)}^{2}  \: square \: units

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Answered by RvChaudharY50
1

Solution :-

given that,

→ Length of rectangle = (a + 3b) units

→ Breadth of rectangle = (5a - b) units

So,

→ Perimeter of rectangle = 2(Length + Breadth)

→ Perimeter of rectangle = 2(a + 3b + 5a - b)

→ Perimeter of rectangle = 2(6a + 2b)

→ Perimeter of rectangle = 4(3a + b)

now, let us assume that side of square is equal to m unit .

then,

→ Perimeter of rectangle = Perimeter of square

→ 4(3a + b) = 4m

→ m = (3a + b)

therefore,

→ Area of square = (Side)²

→ Area of square = m²

→ Area of square = (3a + b)²

→ Area of square = (9a² + b² + 6ab) unit² (Ans.)

Learn more :-

Diagonals AC and BD of quadrilateral ABCD meet at E. IF AE = 2 cm, BE = 5 cm, CE = 10 cm, 8 सेमी.

https://brainly.in/question/27312677

Let abcd be a rectangle. the perpendicular bisector of line segment bd intersect ab and bc in point e and f respectively...

https://brainly.in/question/27813873

Similar questions