the length and breadth of a rectangle are I the ratio 3:1. if the perimeter of a rectangle is 72 m .what is the length of rectangle
Answers
Answer:
I have attached your answer hope it will help you and please mark me brainlist
Answer:
Given :
Length and Breadth of a rectangle are in the ratio 3:1Perimeter of Rectangle = 72m
To Find :
Length of Rectangle
Solution :
\longmapsto\tt{Let\:length\:be=3x}⟼Letlengthbe=3x
\longmapsto\tt{Let\:breadth\:be=1x}⟼Letbreadthbe=1x
\longmapsto\tt{Perimeter=72m}⟼Perimeter=72m
Using Formula :
\longmapsto\tt\boxed{Perimeter\:of\:Rectangle=2(l+b)}⟼PerimeterofRectangle=2(l+b)
Putting Values :
\longmapsto\tt{72=2(3x+1x)}⟼72=2(3x+1x)
\longmapsto\tt{72=2(4x)}⟼72=2(4x)
\longmapsto\tt{\cancel\dfrac{72}{2}=4x}⟼272=4x
\longmapsto\tt{36=4x}⟼36=4x
\longmapsto\tt{x=\cancel\dfrac{36}{4}}⟼x=436
\longmapsto\tt\bold{x=9m}⟼x=9m
Therefore :
\longmapsto\tt{Length=3(9)}⟼Length=3(9)
\longmapsto\tt\bold{27m}⟼27m
\longmapsto\tt\bold{Breadth=9m}⟼Breadth=9m
_______________________
VERIFICATION :
\longmapsto\tt{72=2(l+b)}⟼72=2(l+b)
\longmapsto\tt{72=2(27+9)}⟼72=2(27+9)
\longmapsto\tt{72=2(36)}⟼72=2(36)
\longmapsto\tt\bold{72=72}⟼72=72
HENCE VERIFIED