Math, asked by dhaliwalkaur025, 10 months ago

the length and breadth of a rectangle are in ratio 3:2 if area of field is 3456m^2 find its length and breadth and hence perimeter​

Answers

Answered by Sauron
81

Answer:

The Perimeter of the rectangle is 240 m.

Step-by-step explanation:

Given :

Ratio of the length to breadth = 3 : 2

Area of the field = 3456 m²

To find :

The Perimeter of the rectangle

Solution :

Let the -

  • Length be 3x
  • Breadth be 2x

\bigstar \: \boxed{\sf{Area = Length \times Breadth}}

\sf{\implies} \:  {3456} = 3x \times 2x \\  \\ \sf{\implies} \:  {3456} = 6 {x}^{2}  \\  \\ \sf{\implies} \:   {x}^{2}  =  \dfrac{3456}{6}  \\  \\ \sf{\implies} \:   {x}^{2}  = 576 \\  \\ \sf{\implies} \:  x =  \sqrt{576}  \\  \\ \sf{\implies} \:  x = 24

\rule{300}{1.5}

Length =

\sf{\implies} \:  3 \times 24 \\  \\ \sf{\implies} \:  72 \: m

Length = 72 m

\rule{300}{1.5}

Breadth =

\sf{\implies} \:  2 \times 24 \\  \\ \sf{\implies} \:  48 \: m

Breadth = 48 m

\rule{300}{1.5}

\bigstar \: \boxed{\sf{Perimeter = 2(Length  + Breadth)}}

\sf{\implies} \:  2(72 + 48) \\  \\ \sf{\implies} \:  144 + 96 \\  \\ \sf{\implies} \:  240

Perimeter = 240 m

\therefore The Perimeter of the rectangle is 240 m.

Answered by Anonymous
61

Answer:

\large\bold\red{Length=72\:m}\\\\\large\bold\red{Breadth = 48\:m}\\\\\large\bold\red{Perimeter=240\:m}

Step-by-step explanation:

Given,

A rectangular field having length and breadth in the ratio 3:2.

Let's assume the,

  • Length, l = 3x
  • Breadth, b = 2x

Also,

Given that,

  • Area, a = 3456\:{m}^{2}

But,

We know that,

  • Area of recatangle = Length × Breadth

Therefore,

We get,

 =  > lb = 3456 \\  \\  =  > 3x \times 2x = 3456 \\  \\  =  > 6 {x}^{2}  = 3456 \\  \\  =  >  {x}^{2}  =  \frac{3456}{6}  \\  \\  =  >  {x }^{2}  = 576 \\  \\  =  > x = 576 \\  \\  =  > x = 24

Therefore,

  • Length = 3 × 24 = 72 m
  • Breadth = 2 × 24 = 48 m

Now,

  • Perimeter,p = 2( l+ b)

Therefore,

We get,

 =  >p =  2(72 + 48 ) \\  \\  =  > p = 2 \times 120 \\  \\  =  > p = 240

Therefore,

  • Perimeter = 240 m

Similar questions
Math, 10 months ago