Math, asked by christythomas220, 11 months ago

The length and breadth of a rectangle are in the ratio 5 : 4. If its perimeter is 72 cm, then find its length and breadth.

Answers

Answered by Sauron
88

Answer:

Length is 20 cm and Breadth 16 cm.

Step-by-step explanation:

Given :

Ratio of the length to breadth = 5 : 4

Perimeter = 72 cm

To find :

The length and breadth of the rectangle

Solution :

Let the -

  • Length be 5y
  • Breadth be 4y

\boxed{\sf{Perimeter=2(Length + Breadth)}}

\sf{\implies} \: 2(5y + 4y) = 72 \\  \\ \sf{\implies} \: 10y + 8y = 72 \\  \\ \sf{\implies} \: 18y = 72 \\  \\ \sf{\implies} \: y =  \dfrac{72}{18}  \\  \\ \sf{\implies} \: y =4

\rule{300}{1.5}

Value of 5y

\sf{\implies} \: 5 \times4 \\  \\ \sf{\implies} \: 20

Length = 20 cm

\rule{300}{1.5}

Value of 4y

\sf{\implies} \: 4 \times 4 \\  \\ \sf{\implies} \: 16

Breadth = 16 cm

\therefore Length is 20 cm and Breadth 16 cm.

Answered by Brâiñlynêha
9

\huge\boxed{\bf{\red{SOLUTION:-}}}

\sf\underline{\blue{Given:-}}

Sides of rectangle in ratio =5:4

and the perimeter of rectangle=72cm

Now

\boxed{\sf{Perimeter\:of\: rectangle=2(l+b)}}

\sf\underline{\purple{Solution:-}}

  • Let the side of rectangle be x

  • 5x and 4x

\sf\implies 72=2(5x+4x)\\ \\ \sf\implies 72=2\times 9x\\ \\ \sf\implies 72=18x\\ \\ \sf\implies \cancel{\dfrac{72}{18}}=x\\ \\ \sf\implies 4=x

  • The value of x is 4

  • Now the sides if rectangle

\sf\:\:\bullet value\:of\:5x\\ \\ \sf {\blue{length=5\times 4=20cm}}\\ \\ \sf\:\:\bullet\:and\:value\:of\:4x\\ \\ \sf{\purple{Breadth=4\times 4=16cm}}

Similar questions