Math, asked by Badgirlever, 3 months ago

the length and breadth of a rectangular feild are in the ratio 5:3. The area of the feild is 3375m^2, find the cost of fencing the feild at rs5/m​

Answers

Answered by harshini196
2

Answer:

hope help full to you please make me bralinist votes

Attachments:
Answered by SuitableBoy
63

\large{\underbrace{\underline{\bf{Required\:Answer:-}}}}

 \\

\frak{Given}\begin{cases}\sf{Length:Breadth=\bf{5:3.}}\\\sf{Area\:of\:the\:Field=\bf{3375\:m^2.}}\\\sf{Rate\:of\:fencing=\bf{Rs\:5\:per\:m.}}\end{cases}

 \\

\underline{\bf{\bigstar\:To\:Find:-}}

 \\

  • The cost of fencing the field.

 \\

\underline{\bigstar\bf\:Solution:-}

 \\

» Using the given ratio of sides and the area of the field, we would find the sides of the field.

» After finding the sides, using the formula of perimeter of a rectangle, we would find the perimeter of the field.

» Then, using the perimeter and the given rate , we would find the final answer i.e. the Cost of fencing.

 \\

Finding the Sides of the field

 \\

We know,

  • Length : Breadth = 5:3

Let the ratios be 5x and 3x .

It means -

  • Length = 5x
  • Breadth = 3x

Using the formula of Area -

\odot\;\boxed{\sf Area _{\:Rectangle}=Length\times Breadth}

Put the values..

 \colon \rarr \sf \: \cancel {3375} \:  {m}^{2}    = \cancel5x \times 3x \\  \\  \colon \rarr \sf \:  \cancel{675} \:  {m}^{2}  =  \cancel3 \:  {x}^{2}  \\  \\  \colon \rarr \sf \:  {x}^{2}  = 225 \:  {m}^{2}  \\  \\  \colon \rarr \sf \: x =  \sqrt{225 \:  {m}^{2} }  \\  \\  \colon \dashrightarrow \boxed{ \bf{ \pink{x = 15 \: m}}}

So,

 \colon \leadsto\sf \: length = 5x = 5 \times 15 \: m \\  \\  \colon \dashrightarrow \boxed{ \boxed{ \bf{ \purple{length = 75 \: m}}}}

And,

 \colon \leadsto \sf \: breadth = 3x = 3 \times 15 \: m \\  \\   \colon  \dashrightarrow \boxed{ \boxed{ \bf{ \red{breadth = 45 \: m}}}}

 \\

Finding the Cost of fencing

 \\

We have :

  • Length = 75 m
  • Breadth = 45 m

Using the formula for finding Perimeter..

\odot\:\boxed{\sf Perimeter_{\:Rectangle} = 2(Length+Breadth)}

Put the values..

 \colon \rarr \sf \: perimeter = 2(75 + 45) \: m \\  \\  \colon \rarr \sf \: perimeter = 2 \times 120 \: m \\  \\  \colon \dashrightarrow \boxed{ \bf{ \pink{perimeter = 240 \: m}}}

Now,

We know :

  • Rate of fencing = Rs 5 per m.

As,

 \sf \colon \leadsto \: cost = rate \times perimeter

so,

 \colon \rarr \sf \:  cost = 5 \times 240 \: rs \\  \\  \colon \dashrightarrow  \boxed{ \boxed{ \frak{ \red{cost = 1200 \: rs}}}}

 \\

\therefore\;\underline{\sf Cost\:of\:Fencing\:the\:field=\bf{1200\:Rs.}}

 \\

_____________________________

Similar questions