Math, asked by swaroopshavarma, 7 days ago

The length and breadth of a rectangular lawn are in the ratio 5:3. If the area of the lawn is 3375 m2
and the cost of fencing the lawn is ₹ 8.50 per metre. ANSWER THE FOLLOWING QUESTIONS
i. Find the length of the rectangular lawn
a. 75 m b. 105 m c. 30 m d. 35 m
ii. Find the breadth of the lawn
a. 80 m b. 75 m c. 45 m d. 15 m
iii. Find the perimeter of the rectangular lawn
a. 225 m b. 240 m c. 380 m d. 720 m
iv. Find the total cost of fencing the lawn
a. Rs 5060 b. Rs 4020 c. Rs 4050 d. Rs 2040

Answers

Answered by Yuseong
160

Step-by-step explanation:

As per the provided information in the given question, we have :

  • The length and breadth of a rectangular lawn are in the ratio 5:3.
  • Area of the lawn = 3375 m²
  • Cost of fencing per m = ₹ 8.50

Assumption : Let us say that, length of the lawn is 5x and breadth of the lawn is 3x.

 \sf 3x \: \: \huge\boxed{\begin{array}{cc}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \end{array}} \\ \:  \:  \:  \:  \:  \:  \:   \sf 5x \: m

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\

I. Find the length of the rectangular lawn :

We have,

  • Length = 5x
  • Breadth = 3x

As we know that,

  \longrightarrow \sf{\quad {A_{(Rectangle)} = Length \times Breadth }} \\

Substitute the values.

  \longrightarrow \sf{\quad {3375= 5x \times 3x }} \\

Performing multiplication.

  \longrightarrow \sf{\quad {3375= 15x^2}} \\

Transposing 15 from RHS to LHS.

  \longrightarrow \sf{\quad {\cancel{\dfrac{3375}{15}}= x^2}} \\

Dividing 3375 by 15.

  \longrightarrow \sf{\quad {225= x^2}} \\

Now, balancing the equation.

  \longrightarrow \sf{\quad {\sqrt{225}= x}} \\

Square root of 225 is 15.

  \longrightarrow \sf{\quad {15 = x}} \\

Now,

Length = 5x = 5(15) = 75 m (Option A)

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\

ii. Find the breadth of the lawn

Breadth = 3x = 3(15) = 45 m

(Option C)

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\

iii. Find the perimeter of the rectangular lawn

  \longrightarrow \sf{\quad { P_{(Rectangle) }= 2(\ell + b)}} \\

Substitute the values.

  \longrightarrow \sf{\quad { P_{(Rectangle) }= 2(75 \; m+ 45 \; m)}} \\

Performing addition in the brackets.

  \longrightarrow \sf{\quad { P_{(Rectangle) }= 2(120 \; m)}} \\

Performing multiplication..

  \longrightarrow \bf{\quad { P_{(Rectangle) }= 240 \; m}} \\

(Option B)

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\

iv. Find the total cost of fencing the lawn

↠ Total cost of fencing = Perimeter × Cost of fencing per m

↠ Total cost of fencing = Rs. (240 × 8.50)

Total cost of fencing = Rs. 2040

(Option D)

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\


vikram991: Keep it up <3
Similar questions