Math, asked by sharjitaaggarwal, 5 months ago

The length and breath of a rectangular field are 15 m and 30 m respectively. if a square field has the same Perimeter as this field the area of the square field is?

Answers

Answered by Anonymous
29

Given that, The length and breath of a rectangular field are 15 m and 30 m respectively

_____________________

❒ To Find:

  • a square field has the same Perimeter as this field the area of the square field is.?

Solution:

{ \underline{ \boxed{ \blue{ \sf{perimeter \: of \: rectangle = perimeter \: of \:square}}}}}

: \implies \sf \: perimeter \: of \: rectangle = 2(l + b)  \:  \:  \:  \:  \: \\  \\  \\ : \implies \sf \: perimeter \: of \: rectangle = 2(15 + 30) \\  \\  \\ : \implies \sf \: perimeter \: of \: rectangle = 2 \times 45m \:  \:  \:  \:  \\  \\  \\ : \implies \sf \: perimeter \: of \: rectangle = 90 {m}  \:  \:  \:  \:  \:  \:  \:  \:

 \rm \therefore \purple{ \underline{ \: perimeter \: of \: rectangle = 90 {m} \bigstar }}

so the perimeter of square is:

✬90cm²✬

➺now let's find the side of the square to find the area.!

: \implies \sf \: perimeter \: of \:square = 4  \times s \\  \\  \\ : \implies \sf \: 90cm = 4 \times s \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ : \implies \sf \: side =   \cancel\frac{90}{4} m  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\ : \implies \sf \: side = 22.5m  \star \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now,area of square equals:

 :  \longrightarrow \sf area =   {22.5}^{2}   \:  \:  \:  \:  \:  \:  \:  \: \\  \\  :  \longrightarrow \sf area = 506.25 {m}^{2}

\blue{ \underline{ \boxed{ \pink{ \mathfrak{ \therefore \: area\: of \: the \: square = 506.25 {m}^{2} }}}}}

Answered by Anonymous
7

Answer:

Explanation:

Given :

  • The length and breath of a rectangular field are 15 m and 30 m respectively.
  • Perimeter of rectangular field = Perimeter of square field.

To Find :

  • The area of the square field.

Solution :

We know that,

Perimeter of rectangular field = 2(l + b)

=> Perimeter = 2(15 + 30)

=> Perimeter = 2(45)

=> Perimeter = 90 m

Given that, Perimeter of rectangular field = Perimeter of square field.

=> 90 = 4 × a

=> a = 90/4

=> a = 22.5 m

Again, we know that,

Area of square field =

=> Area = 22.5²

=> Area = 506.25

Hence :

The area of the square field is 506.25 m².

Similar questions