Math, asked by pawanitiwari492, 5 months ago

the length and the breadth of a rectangle are 40 cm and 10cm respectively find the perimeter of a square of area equal to that of the rectangle​

Answers

Answered by SarcasticL0ve
74

Given:

  • Length of Rectangle = 40 cm
  • Breadth of rectangle = 10 cm
  • \sf Area_{\;(square)} = Area_{\;(rectangle)}

⠀⠀

To find:

  • Perimeter of square?

⠀⠀━━━━━━━━━━━━━━━━━━━━━

☯ Let side of square be x cm.

⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

  • \sf Area_{\;(square)} = Area_{\;(rectangle)}

⠀⠀

We know that,

⠀⠀

  • \sf Area_{\;(square)} = (side)^2

  • \sf Area_{\;(Rectangle)} = length \times breadth

⠀⠀

Therefore,

⠀⠀

:\implies\sf side \times side = length \times breadth\\ \\

:\implies\sf x \times x = 40 \times 10\\ \\

:\implies\sf x^2 = 400\\ \\

:\implies\sf \sqrt{x^2} = \sqrt{400}\qquad\quad\bigg\lgroup\bf Squaring\;both\;sides \bigg\rgroup\\ \\

:\implies{\underline{\boxed{\frak{\purple{x = 20}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Side\;of\;square\;is\;{\textsf{\textbf{20\;cm}}}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━

Now, Finding Perimeter of square,

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Perimeter_{\;(square)} = 4 \times side}}}}\\ \\

:\implies\sf Perimeter_{\;(square)} = 4 \times 20\\ \\

:\implies{\underline{\boxed{\frak{\purple{Perimeter_{\;(square)} = 80\;cm}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Perimeter\;of\;square\;is\;{\textsf{\textbf{80\;cm}}}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:Formulas\:related\:to\:it\:\bigstar}}}} \\  \\

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Area\ formula&\bf Perimeter\ formula\\\cline{1-3}\sf Square&\tt side \times side}&\tt 4 \times side\\\cline{1-3}\sf Rectangle&\tt length \times breadth&\tt 2(length + breadth)\\\cline{1-3}\sf Triangle&\tt \dfrac{1}{2} \times base \times height&\tt sum\of\ all\ sides\ of\ \triangle\\\cline{1-3}\end{array}

Similar questions