Math, asked by sagacioux, 1 month ago

The length and the breadth of a rectangle are in the ratio of 3: 2. Find its sides, if its perimeter is 2,500 cm.​

Answers

Answered by Ʀíɗɗℓεʀ
416

Given : The length and the breadth of a rectangle are in the ratio of 3 : 2.

To Find : Find length and breadth of rectangle ?

_________________________

Solution : Let the length of rectangle (L) 3y & breadth of rectangle (B) 2y

~

\underline{\frak{\pmb{As~we~know~that~:}}}

  • Perimeter of rectangle = 2(L + B)

~

\underline{\frak{\pmb{According ~to ~the ~question~:}}}

➻ 2500 = 2(3y + 2y)

➻ 2500 = 2(5y)

➻ 2500 = 2 × 5y

➻ 2500 = 10y

➻ 10y = 2500

➻ y = 2500/10

➻ y = 250/1

y = 250

~

  • Length of rectangle = 3(250)
  • Length of rectangle = 3 × 250
  • Length of rectangle = 750 cm

  • Breadth of rectangle = 2(250)
  • Breadth of rectangle = 2 × 250
  • Breadth of rectangle = 500 cm

~

Hence,

  • Length and Breadth of rectangle are 750 cm and 500 cm.
Answered by Anonymous
43

Answer:

Diagram :

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 3x\ cm}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 2x\ cm}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

\begin{gathered}\end{gathered}

Given :

  • The length and the breadth of a rectangle are in the ratio of 3:2.
  • The perimeter of rectangle is 2500 cm.

\begin{gathered}\end{gathered}

To Find :

  • Side of rectangle

\begin{gathered}\end{gathered}

Using Formula :

\small{\longrightarrow{\underline{\boxed{\pmb{\sf{Perimeter \:  of  \: rectangle = 2(l + b)}}}}}}

☼ Where :-

  • l = length
  • b = breadth

\begin{gathered}\end{gathered}

Solution

☼ Here we have given that lenght and breadth of a rectangle are in the ratio of 3:2. So let the sides be :-

  • Length = 3x
  • Breadth = 2x

\rule{300}{1.5}

☼ Now, According to the question :-

{\longrightarrow{\sf{Perimeter \:  of  \: rectangle = 2(l + b)}}}

{\longrightarrow{\sf{2500 \: cm = 2(3x + 2x)}}}

{\longrightarrow{\sf{2500 \: cm = 2(5x)}}}

{\longrightarrow{\sf{5x = \dfrac{2500}{2}}}}

{\longrightarrow{\sf{5x =  \cancel{\dfrac{2500}{2}}}}}

{\longrightarrow{\sf{5x =1250}}}

{\longrightarrow{\sf{x = \dfrac{1250}{5}}}}

{\longrightarrow{\sf{x =  \cancel{\dfrac{1250}{5}}}}}

{\longrightarrow{\underline{\underline{\sf{x = 250 \: cm}}}}}

{\bigstar{\underline{\boxed{\sf{\pink{x = 250 \: cm}}}}}}

\rule{300}{1.5}

☼ Hence :-

  • Lenght = 3x
  • Lenght = 3 × 250 cm
  • Lenght = 750 cm

The lenght of rectangle is 750 cm.

  • Breadth = 2x
  • Breadth = 2 × 250 cm
  • Breadth = 500 cm

The breadth of rectangle is 500 cm.

\begin{gathered}\end{gathered}

Verification

{\longrightarrow{\sf{Perimeter \:  of  \: rectangle = 2(l + b)}}}

{\longrightarrow{\sf{2500 \: cm= 2(750 + 500) \: cm}}}

{\longrightarrow{\sf{2500 \: cm= 2(1250) \: cm}}}

{\longrightarrow{\sf{2500 \: cm= 2 \times 1250 \: cm}}}

{\longrightarrow{\sf{2500 \: cm= 2500 \: cm}}}

{\longrightarrow{\underline{\underline{\sf{LHS = RHS}}}}}

{\bigstar{\underline{\boxed{\sf{\pink{Hence \: Verified!}}}}}}

\begin{gathered}\end{gathered}

Learn More :

\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}

\rule{300}{1.5}

Attachments:
Similar questions