Math, asked by dipdek5966, 9 months ago

The length and the breadth of a rectangle park area in the ratio 5:3 and it's perimeter is 128m Find the area of the park.

Answers

Answered by ButterFliee
97

GIVEN:

  • The length and the breadth of a rectangle park area in the ratio 5:3
  • The perimeter of park is 128 m

TO FIND:

  • What is the area of the rectangular park ?

SOLUTION:

Let 'x' be the common in given ratios

  • LENGTH = 5x
  • BREADTH = 3x

We know that the formula for finding the perimeter of rectangular park is:-

\large{\boxed{\bf{\star \: PERIMETER = 2(L+B) \: \star}}}

According to question:-

\rm{\longrightarrow 128 = 2(5x +3x) }

\rm{\longrightarrow 128 = 2 \times 8x }

\rm{\longrightarrow 128 = 16x }

\rm{\longrightarrow \cancel\dfrac{128}{16} = x }

\large\bf{\star \: 8 = x \: \star}

  • LENGTH = 5x = 5(8) = 40 m
  • BREADTH = 3x = 3(8) = 24 m

To find the area of the rectangular park, we use the formula:-

\large{\boxed{\bf{\star \: AREA = LENGTH \times BREADTH \: \star}}}

According to question:-

\rm{\longrightarrow AREA = 40 \times 24 }

\large\bf{\star \: AREA  = 960 \: m^2 \: \star}

Hence, the area of the rectangular park is 960

______________________


Anonymous: Great dear :)
Answered by Anonymous
152

QUESTION:-

ᴛʜᴇ ʟᴇɴɢᴛʜ ᴀɴᴅ ᴛʜᴇ ʙʀᴇᴀᴅᴛʜ ᴏғ ᴀ ʀᴇᴄᴛᴀɴɢʟᴇ ᴘᴀʀᴋ ᴀʀᴇᴀ ɪɴ ᴛʜᴇ ʀᴀᴛɪᴏ 5:3 ᴀɴᴅ ɪᴛ's ᴘᴇʀɪᴍᴇᴛᴇʀ ɪs 128ᴍ ғɪɴᴅ ᴛʜᴇ ᴀʀᴇᴀ ᴏғ ᴛʜᴇ ᴘᴀʀᴋ.

ANSWER✓

\Large\underline\bold{GIVEN}

 \sf\dashrightarrow  RATIO\:OF\:L:B =5:3

 \sf\dashrightarrow  perimeter\:of\:park(rectangle) =128m

\Large\underline\bold{TO\:FIND,}

 \sf\large\dashrightarrow  area\:of\:rectangle

\Large\underline\bold{SOLUTION,}

 \sf\large\therefore NOW,

 \sf\therefore let\:the\:length(L)\:be\:5x.........eq^1

 \sf\therefore let\:the\:breadth(B)\:be\:3x.......eq^2

\Large\underline\bold{using\:formula,}

 \sf\implies perimeter\:of\:rectangle= 2 \times (L+B)

 \sf\implies area\:of\:rectangle=  Length \times Breadth

A.T.Q...i.e..,...ACCORDING TO QUESTION,

 \sf\large\therefore perimeter\:of\:rectangle= 2 \times (L+B)

\sf{\implies 128 = 2 \times (5x +3x) }

\sf{\implies 128 = 2 \times (8x) }

\sf{\implies 128 = 16x }

\sf{\implies 16x=128 }

\sf{\implies x= \dfrac{128}{16}  }

\sf{\implies x= \cancel \dfrac{128}{16}  }

\sf\large { x=8 }

\sf{\boxed{\sf{x=8}}}

 \sf\therefore substituting\:value\:of\:x\:in\:eq^1\:and\:eq^2

\Large\underline\bold{we\:get,}

 \sf\therefore  LENGTH = 5x = 5 \times (8) = 40 m

 \sf\therefore  BREADTH = 3x = 3 \times (8) = 24m

NOW FINDING THE AREA OF RECTANGLE,

now,

 \sf\large\therefore area\:of\:rectangle= Length \times Breadth

\rm{\implies 40 \times 24 }

\sf{\boxed{\sf{area  = 960 m^2}}}

\Large\underline\bold{\therefore area\:of\:park\:is\:960m^2}

!!___________________!!

ADDITIONAL INFORMATION,

basic info,

  • rectangle is a quadrilateral
  • whose opposite sides are parllel
  • the opposite sides are equal to each other
  • to find diagonal of the rectangl,

the formula used is,

\sf{\boxed{\sf{\therefore diagonal= \sqrt{a^2+b^2}}}}

\Large\underline\bold{DIAGRAM,}

Rectangle

\setlength{\unitlength}{1.6mm}\begin{picture}(5,6)\put(0,25){\line(1,0){35}}\put(0,0){\line(1,0){35}}\put(0,0){\line(0,1){25}}\put(35,0){\line(0,1){25}}\put(17,-2){breadth}\put(18,-2){}\put(35,15){length}\put(18,0){  }\end{picture}


Anonymous: Awesome :D
mysticd: Length (L) = 5x \: --(1)
mysticd: B = 3x --(2)
mysticd: What is a and b in basic info
Similar questions