Math, asked by kirtijalan109, 10 months ago

the length and width of a rectangle are in the ratio 5:3.find the dimensions of the rectangle ,if the perimeter is 112 cm​

Answers

Answered by Sauron
110

Answer:

The Length is 35 cm and Breadth is 15 cm.

Step-by-step explanation:

Given :

Ratio of Length to Breadth = 5 : 3

Perimeter of the rectangle = 112 cm

To find :

The dimensions of the rectangle

Solution :

Let the -

  • Length be 5y
  • Bredth be 3y

★ Perimeter = 2(Length + Breadth)

⇒ 112 = 2(5y + 3y)

⇒ 112 = 10y + 6y

⇒ 112 = 16y

⇒ y = 112/16

⇒ y = 7

\rule{300}{1.5}

★ Value of 5(y)

⇒ 5(7)

⇒ 35

Length = 35 cm

\rule{300}{1.5}

Value of 3y

⇒ 3(5)

⇒ 15

Breadth = 15 cm

\therefore The Length is 35 cm and Breadth is 15 cm.

Answered by Anonymous
276

\bold{\huge{\underline{\underline{\sf{AnsWer:}}}}}

Length of the rectangle = 35 cm

Width of the rectangle = 15 cm

\bold{\large{\underline{\underline{\sf{StEp\:by\:stEp\:explanation:}}}}}

GiVeN :

  • The length and width of a rectangle are in the ratio 5:3.
  • Perimeter of the rectangle = 112 cm

To FiNd :

  • Dimensions of the rectangle

SoLuTiOn :

Let x be the common multiple of the ratio 5:3.

° Length = 5x cm

Width = 3x cm

Since we have the perimeter given in the question, we can use the formula for perimeter of a rectangle.

FoRmUlA :

\bold{\large{\boxed{\sf{\red{Perimeter\:of\:a\:rectangle\:=\:2\:(l\:+\:b)}}}}}

Block in the values,

\longrightarrow \bold{\sf{112\:=\:2\:(5x\:+\:3x)}}

\longrightarrow \bold{\sf{112\:=\:2\:(8x)}}

\longrightarrow \bold{\sf{112\:=\:16x}}

\longrightarrow \bold{\sf{\dfrac{112}{16}\:=\:x}}

\longrightarrow \bold{\sf{7=x}}

Substitute x = 7 in the ratio of length and width of the rectangle.

\bold{\large{\sf{\boxed{Length\:=\:5x\:=\:5\:\times\:7\:=\:35\:cm}}}}

\bold{\large{\sf{\boxed{Width\:=\:3x\:=\:3\:\times\:7\:=\:15\:cm}}}}

Similar questions