Math, asked by anishad15, 4 months ago


The length and width of the rectangle are in the ratio 4:3. If the perimeter of the
rectangle is 56 m find the length and width of the rectangle.
.
Please answer with proper steps tomorrow is my exam​

Answers

Answered by Anonymous
51

Given: Ratio of length and breadth of a rectangular is 4:3. & Perimeter of rectangle is 56m.

Need to find: Dimensions of rectangle?

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's consider length and width of rectangle be 4x and 3x.

⠀⠀⠀⠀⠀

As we know that,

⠀⠀⠀⠀⠀

\begin{gathered}\star\:{\underline{\boxed{\frak{Perimeter_{\:(rectangle)} = 2(Length + width)}}}}\\\\\\ \bf{\dag}\:{\underline{\frak{Putting\:given\:values\:in\:formula,}}}\\\\\\ :\implies\sf 56 = 2(4x + 3x)\\\\\\ :\implies\sf 56 = 2(7x) \\\\\\ :\implies\sf 56 = 14x \\\\\\ :\implies\sf x = \cancel{\dfrac{56}{14}} \\\\\\ :\implies{\underline{\boxed{\frak{\purple{x = 4}}}}}\:\bigstar\\\\\end{gathered}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Therefore,

⠀⠀⠀⠀⠀

Length of rectangular park, 4x = 16m

Widthth of rectangular park, 3x = 12m

⠀⠀⠀⠀⠀

\therefore\:{\underline{\sf{Hence,\:Dimensions\:of\:rectangle\:are\:\bf{16\:m}\: \sf{and}\: \bf{12\:m}\: \sf{respectively}.}}}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 16m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 12m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

Answered by MrHyper
175

\large\mathfrak{\pmb{{\underline{Given}}:}}

  • The length and breadth of the rectangle are in ratio 4 : 3
  • Perimeter of the rectangle is 56m

\large\mathfrak{\pmb{{\underline{To~find}}:}}

  • The length and breadth of the rectangle

\large\mathfrak{\pmb{{\underline{Solution}}:}}

  • Let the length and breadth of the rectangle be 4x and 3x respectively

 \sf Perimeter \: of \: a \: rectangle = 2(l + b) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf : \implies 56m= 2(4x + 3x) \\  \sf : \implies 56 = 2(7x) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf : \implies 56 = 14x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf : \implies 14x = 56 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf : \implies x =  \frac{\cancel{56}~~^{4}}{\cancel{14}~~^{1}}\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf : \implies   \blue{\underline{ \boxed{ \sf{ \pmb {x = 4}}}}}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Now we have x = 4

\large\therefore\mathfrak{\pmb{{\underline{Required~answer}}:}}

  •  \sf Length = 4x = 4 \times 4 = \blue{\underline{ \underline{ \sf{ \pmb{ \: 16m \: }}}}}
  •  \sf Breadth = 3x = 3 \times 4 = \blue{\underline{ \underline{ \sf{ \pmb{ \: 12m \: }}}}}

\large\mathfrak{\pmb{{\underline{Verification}}:}}

  • Length = 16m
  • Breadth = 12m

 \sf Perimeter \: of \: a \: rectangle = 2(l + b) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf  = 2(16 + 12) \\  \sf = 2(28)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf = \blue{\underline{ \boxed{ \sf{ \pmb {56m}}}}} \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Hence Verified !
Similar questions